×

zbMATH — the first resource for mathematics

On regular rings and self-injective rings. (English) Zbl 0452.16007

MSC:
16E50 von Neumann regular rings and generalizations (associative algebraic aspects)
16Dxx Modules, bimodules and ideals in associative algebras
16D50 Injective modules, self-injective associative rings
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Armendariz, E. P.: Rings with DCC on essential left ideals. Comm. Algebra8, 299-308 (1980). · Zbl 0444.16015 · doi:10.1080/00927878008822460
[2] Chase, U.: Direct products of modules. Trans. Amer. Math. Soc.97, 453-473 (1960). · Zbl 0100.26602 · doi:10.1090/S0002-9947-1960-0120260-3
[3] Cozzens, J. H.: Homological properties of the ring of differential polynomials. Bull. Amer. Math. Soc.76, 75-79 (1970). · Zbl 0213.04501 · doi:10.1090/S0002-9904-1970-12370-9
[4] Damiano, R. F.: A right PCI is right Noetherian. Proc. Amer. Math. Soc.77, 11-14 (1979). · Zbl 0425.16022 · doi:10.1090/S0002-9939-1979-0539620-1
[5] Domanov, O. I.: A prime but not primitive regular ring. Uspehi Mat. Nauk.32 (198), 219-220 (1977). · Zbl 0374.16007
[6] Faith, C.: Algebra II: Ring Theory. Berlin-Heidelberg-New York: Springer. 1976. · Zbl 0335.16002
[7] Fisher, J. W.: Von Neumann regular rings versusV-rings. In: Ring Theory, Proc. Oklahoma Conference, pp. 101-119 (B. R. McDonald et al., ed.). New York-Basel: Marcel Dekker. 1974.
[8] Goodearl, K. R.: Ring Theory: Nonsingular Rings and Modules. New York-Basel: Marcel Dekker. 1976. · Zbl 0336.16001
[9] Goodearl, K. R.: Von Neumann regular rings. London-San Francisco-Melbourne: Pitman. 1979. · Zbl 0411.16007
[10] Jain, S. K., Mohamed, S. H., Singh, S.: Rings in which every right ideal is quasi-injective. Pac. J. Math.31, 73-79 (1969). · Zbl 0213.04401
[11] Kurshan, R. P.: Rings whose cyclic modules have finitely generated socle. J. Algebra15, 376-386 (1970). · Zbl 0199.35503 · doi:10.1016/0021-8693(70)90066-9
[12] Ornstein, A. J.: Rings with restricted minimum condition. Proc. Amer. Math. Soc.19, 1145-1150 (1968). · Zbl 0181.04802 · doi:10.1090/S0002-9939-1968-0233838-6
[13] Tominaga, H.: Ons-unital rings, II. Math. J. Okayama Univ.19, 171-182 (1977). · Zbl 0371.16008
[14] Utumi, Y.: On continuous regular rings and semi-simple self-injective rings. Canad. J. Math.12, 597-605 (1960). · Zbl 0100.26303 · doi:10.4153/CJM-1960-053-9
[15] Utumi, Y.: On continuous rings and self-injective rings. Trans. Amer. Math. Soc.118, 158-173 (1965). · Zbl 0144.27301 · doi:10.1090/S0002-9947-1965-0174592-8
[16] Yue Chi Ming, R.: A note on singular ideals. TĂ´hoku Math. J.21, 337-342 (1969). · Zbl 0191.03802 · doi:10.2748/tmj/1178242946
[17] Yue Chi Ming, R.: On annihilators and continuous regular rings. Bull. Math. Soc. Sci. Math. Roumanie20 (68), 423-427 (1976). · Zbl 0368.16006
[18] Yue Chi Ming, R.: On von Neumann regular rings, III. Mh. Math.86, 251-257 (1978). · Zbl 0414.16006 · doi:10.1007/BF01659723
[19] Yue Chi Ming, R.: On generalizations ofV-rings and regular rings. Math. J. Okayama Univ.20, 123-129 (1978). · Zbl 0402.16014
[20] Yue Chi Ming, R.: On regular rings and continuous rings. Math. Japonica24, 563-571 (1979). · Zbl 0438.16007
[21] Yue Chi Ming, R.: On regular rings andV-rings. Mh. Math.88, 335-344 (1979). · Zbl 0423.16006 · doi:10.1007/BF01534252
[22] Yue Chi Ming, R.: OnV-rings and prime rings. J. Algebra62, 13-20 (1980). · Zbl 0429.16018 · doi:10.1016/0021-8693(80)90202-1
[23] Zelmanowitz, J.: Injective hulls of torsionsfree modules. Canad. J. Math.23, 1094-1101 (1971). · Zbl 0222.16023 · doi:10.4153/CJM-1971-115-x
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.