×

zbMATH — the first resource for mathematics

On evolution inequalities of a modified Navier-Stokes type. III. (English) Zbl 0452.35101

MSC:
35Q30 Navier-Stokes equations
35A05 General existence and uniqueness theorems (PDE) (MSC2000)
76D05 Navier-Stokes equations for incompressible viscous fluids
PDF BibTeX Cite
Full Text: EuDML
References:
[1] Golovkin K. K.: New model equations of the motion of a viscous fluid and their unique solvability. (Russian). Trudy Mat. Inst. Akad. Nauk SSSR, CII (1967), 29-50.
[2] Kaniel S.: On the initial value problem for an incompressible fluid with nonlinear viscosity. J. Math. Mech., 19 (1970), 681-707. · Zbl 0195.10801
[3] Ladyshenskaja O. A.: On new equations for describing the motion of viscous, incompressible fluids and the global solvability of their boundary value problems. (Russian). Trudy Mat. Inst. Akad. Nauk SSSR, CII (1967), 85 - 104.
[4] Ladyshenskaja O. A.: On modifications of the Navier-Stokes equations with big gradient of velocity. (Russian). Zap. Nauch. Sem. Leningr. Ot. Mat. Inst., 7 (1968), 126-154.
[5] Ladyshenskaja O. A.: Mathematical problems in the dynamics of viscous, incompressible fluids. (Russian). 2nd edition, Moscow 1970.
[6] Lions J. L.: Quelques méthodes de résolution des problèmes aux limites non linéaires. Paris 1969. · Zbl 0189.40603
[7] Müller M., Naumann J.: On evolution inequalities of a modified Navier-Stokes type, I. Apl. Mat. 23 (1978), 208 - 230.
[8] Müller M., Naumann J.: On evolution inequalities of a modified Navier-Stokes type, II. Apl. Mat. 23 (1978), 397-407, · Zbl 0452.35100
[9] Nečas J.: Les méthodes directes en théorie des équations elliptiques. Prague 1967. · Zbl 1225.35003
[10] Prouse G.: On a unilateral problem for the Navier-Stokes equations. Atti Accad. Naz. Lincei, Rend. Cl. Sci. Fis. Mat., (8) 52 (1972); Nota I: 337-342; Nota II: 467-478. · Zbl 0253.35067
[11] Temam R.: On the theory and numerical analysis of the Navier-Stokes equations. University of Maryland, 1973, Orsay. · Zbl 0273.35002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.