Palmerio, Bernadette; Dervieux, Alain Hadamard’s variational formula for a mixed problem and an application to a problem related to a Signorini-like variational inequality. (English) Zbl 0452.49011 Numer. Funct. Anal. Optimization 1, 113-144 (1979). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 6 Documents MSC: 49J20 Existence theories for optimal control problems involving partial differential equations 35A15 Variational methods applied to PDEs 49J40 Variational inequalities Keywords:mixed problem PDF BibTeX XML Cite \textit{B. Palmerio} and \textit{A. Dervieux}, Numer. Funct. Anal. Optim. 1, 113--144 (1979; Zbl 0452.49011) Full Text: DOI OpenURL References: [1] Chavent G., Analyse fonctionnelle et identification de coefficients répartis dans les équations aux dérivées partielles (1970) [2] Garabedian P. R., Pacific J. Math 6 pp 611– (1956) · Zbl 0072.20301 [3] Partial differential equations (1964) [4] Grisvard P., Numerical solutions of P.D.E. 3 (1976) · Zbl 0361.35022 [5] . Conférences au Séminaire d’Analyse Numérique de Lyon-Saint-Etienne. Mai, pp.11–13. [6] oeuvres de J. Hadamard (1908) [7] Lions J. L., Contrôle Optimal de Systèmes gouvernés par des Equations aux Dérivées Partielles (1968) [8] Lions J. L., Quelques méthodes de résolution de problémes aux limites non linéaires (1969) [9] Problèmes aux limites dans les équations aux dérivées partielles (1965) [10] Magenes E., Problèmes aux limites non homogènes (1968) · Zbl 0101.07901 [11] Mignot F., J. of Funct. Anal 22 pp 130– (1976) · Zbl 0364.49003 [12] Murat F., Lecture Notes in Computer Science 41 pp 54– (1976) [13] 1976. ”Sur le contrôle par un domaine géométrique”. Vol. 6, Paris: Pub. Lab. Anal. Num. Univ. [14] Control theory, numerical methods and computer systems modeling 107 pp 610– (1975) [15] 1976. ”Sur les problemès d’optimisation de Structure en mécanique des fluidec”. Vol. 6, Paris: Thesis, Univ. [16] Schaeffer D. G., Advances in Mathematics 16 pp 222– (1975) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.