×

zbMATH — the first resource for mathematics

Processus de naissance avec interaction des voisins, évolution de graphes. (French) Zbl 0452.60089

MSC:
60J80 Branching processes (Galton-Watson, birth-and-death, etc.)
60K35 Interacting random processes; statistical mechanics type models; percolation theory
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML
References:
[1] K. B. ATHREYA and P. E. NEY, Branching processes, Springer, New York, 1972. · Zbl 0259.60002
[2] P. BILLINGSLEY, Ergodic theory and information, J. Wiley and Sons, 1965. · Zbl 0141.16702
[3] P. CARTIER, Fonctions harmoniques sur un arbre, Sympos. math., 9, Calcolo Prob., teor. Turbolenza 1971, pp. 203-270 (1972). · Zbl 0283.31005
[4] T. E. HARRIS, Some mathematical models for branching processes, Second Berkeley symposium on mathematical statistics and probability, Univ. Calif. Press 1951. · Zbl 0045.07701
[5] J. HAWKES, Trees generated by a simple branching process, to appear. · Zbl 0468.60081
[6] P. JAGERS, Branching processes with biological applications, J. Wiley, 1975. · Zbl 0356.60039
[7] H. JÜRGENSEN, Probabilistic L-systems, Automata, Languages, Development, pp. 211-225. North Holland Publishing Company (1976).
[8] J. R. KINNEY and T. S. PITCHER, The dimension of the support of a random distribution function, Bull. Amer. Math. Soc., (1964), 161-164. · Zbl 0122.13402
[9] K. P. LEE and G. ROZENBERG, Developmental systems with finite axiom sets, International J. of Computer Mathematics, 4 (1974), 43-48 and 281-304. · Zbl 0327.68069
[10] A. LINDENMAYER, Mathematical models of cellular interaction in development, J. theoretical biology, 18 (1968), 280-315.
[11] B. MANDELBROT, Fractals : form, chance and dimension, Freeman and Co. (1977). · Zbl 0376.28020
[12] B. MANDELBROT, LES objects fractals, La Recherche, 9, 85, pp. 1-13.
[13] B. MANDELBROT, Colliers aléatoires et une alternative aux promenades au hasard sans boucle : LES cordonnets discrets et fractals, C. R. Acad. Sc., Paris, 286 (1978), 933-936. · Zbl 0386.60049
[14] B. MANDELBROT, Fractal limits of random beadsets and geometric imbedding of birth processes, to appear.
[15] J. PEYRIERE, Sur LES colliers aléatoires de B. Mandelbrot, C. R. Acad. Sc., Paris, 286 (1978), 937-939. · Zbl 0386.60050
[16] J. PEYRIERE, Mandelbrot random beadsets and birth processes with interaction, I.B.M. Research report, RC-7417.
[17] J. PEYRIERE, Processus de naissance avec interaction des voisins, C. R. Acad. Sc., Paris, 289 (1979), 223-224 et 557. · Zbl 0414.60070
[18] E. SENETA, Non-negative matrices, J. Wiley (1973).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.