Griffiths, Phillip A. A theorem concerning the differential equations satisfied by normal functions associated to algebraic cycles. (English) Zbl 0453.14001 Am. J. Math. 101, 94-131 (1979). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 1 ReviewCited in 16 Documents MSC: 14C30 Transcendental methods, Hodge theory (algebro-geometric aspects) 14C20 Divisors, linear systems, invertible sheaves 14K30 Picard schemes, higher Jacobians 14F40 de Rham cohomology and algebraic geometry 14D05 Structure of families (Picard-Lefschetz, monodromy, etc.) 30D45 Normal functions of one complex variable, normal families 32A25 Integral representations; canonical kernels (Szegő, Bergman, etc.) Keywords:Hodge bundle; Hodge conjecture; normal functions; Picard-Fuchs equations; Lefschetz pencil of hyperplane sections; intermediate jacobian; monodromy; algebraic cycles PDF BibTeX XML Cite \textit{P. A. Griffiths}, Am. J. Math. 101, 94--131 (1979; Zbl 0453.14001) Full Text: DOI