Exact spatially homogeneous cosmologies. (English) Zbl 0453.53046


53C50 Global differential geometry of Lorentz manifolds, manifolds with indefinite metrics
53B30 Local differential geometry of Lorentz metrics, indefinite metrics
83C20 Classes of solutions; algebraically special solutions, metrics with symmetries for problems in general relativity and gravitational theory
83F05 Relativistic cosmology
58J45 Hyperbolic equations on manifolds
Full Text: DOI


[1] Ellis, G. F. R., and MacCallum, M. A. H. (1969).Commun. Math. Phys.,12, 108. · Zbl 0177.57601
[2] MacCallum, M. A. H. (1973). ?Cosmological Models from a Geometric Point of View,? inCargèse Lectures in Physics, vol. 6. Lectures at the International Summer School of Physics, Cargèse, Corsica, 1971, Ed. E. Schatzman (Gordon and Breach, New York).
[3] Ellis, G. F. R. (1967).J. Math. Phys.,8, 1171.
[4] Stewart, J. M., and Ellis, G. F. R. (1968).J. Math. Phys.,9, 1072.
[5] Wilkinson, D. A. (1979). ?On Exact, Perfect Fluid Solutions of the Einstein Field Equations,? Ph.D. thesis, University of Windsor (unpublished).
[6] Glass, E. N. (1977).J. Math. Phys.,18, 708.
[7] Stephani, H. (1967).Commun. Math. Phys.,5, 337. · Zbl 0152.46001
[8] Canuto, V., Datta, B., and Kalman, G. (1978).Astrophys. J.,221, 274.
[9] Canuto, V. (1978).Riv. Nuovo Cimento,1, 1.
[10] Jacobs, K. C. (1968).Astrophys. J.,153, 661.
[11] Collins, C. B. (1971).Commun. Math. Phys.,23, 137. · Zbl 0229.34022
[12] Collins, C. B. (1977).Phys. Lett.,60A, 397.
[13] Damião Soares, I., and Assad, M. J. D. (1978).Phys. Lett.,66A, 359.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.