×

zbMATH — the first resource for mathematics

The moment map and collective motion. (English) Zbl 0453.58015

MSC:
37J99 Dynamical aspects of finite-dimensional Hamiltonian and Lagrangian systems
53D50 Geometric quantization
58D30 Applications of manifolds of mappings to the sciences
81R10 Infinite-dimensional groups and algebras motivated by physics, including Virasoro, Kac-Moody, \(W\)-algebras and other current algebras and their representations
20C35 Applications of group representations to physics and other areas of science
70H99 Hamiltonian and Lagrangian mechanics
22E70 Applications of Lie groups to the sciences; explicit representations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Adler, M., Invent. math., 50, 219-248, (1979)
[2] Arnold, V., Mathematical methods of classical mechanics, (), No. 60 · Zbl 0386.70001
[3] Arnold, V., Ann. inst. Fourier (Grenoble), 16, 319-361, (1966)
[4] Bohr, A.; Mottleson, B.R., ()
[5] Buck, R.; Biedenharn, L.C.; Cusson, R.Y., Nucl. phys. A, 37, 205-241, (1979)
[6] Cusson, R.Y., Nucl. phys. A, 114, 289-308, (1968)
[7] Ebin, D.G., (), 11-40
[8] Ebin, D.G., Ann. of math., 105, 141-200, (1977)
[9] Ebin, D.G.; Marsden, J., Ann. of math., 92, 102-163, (1970) · Zbl 0211.57401
[10] Gel’fand; Cetlin, M.L., Dokl. akad. nauk SSSR, 71, 825-828, (1950)
[11] Guillemin, V.; Sternberg, S., Geometric asymptotics, (1977), Amer. Math. Soc Providence, R.I · Zbl 0364.53011
[12] Hermann, R., Differential geometric methods in physics and engineering, (1973), Interdisciplinary Mathematics New Brunswick
[13] Hermann, R., J. mathematical phys., 13, 833-878, (1972)
[14] Hermann, R., Toda lattices, asymplectic manifolds, backlund transformations and kinks, (1977), Mathematical Sciences Press Brookline, Mass, Parts A and B · Zbl 0381.35001
[15] {\scR. Howe}, Remarks on classical invariant theory, to appear. · Zbl 0674.15021
[16] Iachello, F., ()
[17] {\scE. Ihrig and G. Rosensteel}, Geometric quantization of nuclear collective models, to appear. · Zbl 0413.58013
[18] Kashiwara, M.; Vergne, M., Invent. math., 44, 1-47, (1978)
[19] Kazhdan, D.; Kostant, B.; Sternberg, Comm. pure appl. math., 31, 481-507, (1978)
[20] Kirillov, A., Elements of the theory of representations, (1976), Springer-Verlag Berlin/New York · Zbl 0342.22001
[21] Kostant, B., ()
[22] {\scB. Kostant}, The solution to a generalized Toda lattice and representation theory, to appear. · Zbl 0433.22008
[23] Lax, P.D., Comm. pure appl. math., 21, 467-490, (1968)
[24] Lebedev, D.R.; Manin, Yu.I., Gelfand-Dikii Hamiltonian operator and coadjoint representation of Volterra group, (1978), Institute of Theoretical and Experimental Physics Moscow · Zbl 0455.58012
[25] Marsden, J.; Weinstein, A., Rep. math. phys., 5, 121-130, (1974)
[26] Rawnsley, J.H., (), 345-350
[27] Rosensteel, G.; Rowe, Ann. phys. (N.Y.), 96, 1-42, (1976)
[28] Rosensteel, G.; Rowe, D.J., Ann. phys. (N.Y.), 104, 134-144, (1977)
[29] Rosensteel, G.; Rowe, D.J., (), 115-132
[30] Simms, D.J.; Woodhouse, N.M.J., ()
[31] Sniatycki, J., Geometric quantization and quantum mechanics, (1980), Springer-Verlag Berlin/New York · Zbl 0429.58007
[32] Souriau, J.M., Géométrie symplectique et physique mathématique, (1975), Paris · Zbl 0399.70003
[33] Souriau, J.M., Structure des systèmes dynamiques, (1970), Dunod Paris · Zbl 0186.58001
[34] Sternberg, S., ()
[35] Sternberg, S., Differential geometric methods in physics, (), 570
[36] Sternberg, S., Trans. amer. math. soc., 212, 113-120, (1975)
[37] Sternberg, S.; Ungar, T., Hadronic J., 1, 33-76, (1978)
[38] Sternberg, S.; Wolf, J., Trans. amer. math. soc., 238, 1-43, (1978)
[39] Symes, W., MRC technical summary report no. 1957, (1979)
[40] Ui, I., Progr. theor. phys. (Kyoto), 44, 153-171, (1970)
[41] Vinogradov, A.M.; Kuperschmidt, B., Usp. mat. nauk, 32, (1977)
[42] Weaver, L.; Biedenharn, L.C., Nucl. phys. A, 185, (1972)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.