×

Time lags and global stability in two-species competition. (English) Zbl 0453.92014


MSC:

92D25 Population dynamics (general)
34K99 Functional-differential equations (including equations with delayed, advanced or state-dependent argument)
34K20 Stability theory of functional-differential equations
35B35 Stability in context of PDEs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Gopalsamy, K. and B. D. Aggarwala. 1980. ”Limit Cycles in Two-species Competition with Time Delays.”J. Aust. math. Soc., Series B (to appear). · Zbl 0458.92014
[2] MacDonald, N. 1976. ”Time Delay in Prey-Predator Models.”Mathl. Biosci. 28, 321–330. · Zbl 0324.92016 · doi:10.1016/0025-5564(76)90130-9
[3] May, R. M. 1973. ”Time Delay Versus Stability in Population Models With Two and Three Trophic Levels.”Ecology,54, 315–325. · doi:10.2307/1934339
[4] – 1974.Stability and Complexity in Model Ecosystems. Princeton NJ: Princeton University Press.
[5] Miller, R. K. 1966. ”On Volterra’s Population Equation.”SIAM J. appl. Math. 14, 446–452. · Zbl 0161.31901 · doi:10.1137/0114039
[6] Rescigno, A. and I. W. Richardson. 1973. ”The Deterministic Theory of Population Dynamics.” InFoundations of Mathematical Biology Vol. 3, Ed. R. Rosen, pp. 283–360. New York: Academic Press. · Zbl 0347.92021
[7] Volterra, V. 1931.Leçon sur la Théorie Mathématique de la Lutte pour la Vie. Paris: Gauthier-Villars.
[8] Protter, M. H. and H. F. Weinberger. 1967.Maximum Principles of Differential Equations. Englewood Cliffs, N.J.: Prentice Hall. · Zbl 0153.13602
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.