zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Time lags and global stability in two-species competition. (English) Zbl 0453.92014

92D25Population dynamics (general)
34K99Functional-differential equations
34K20Stability theory of functional-differential equations
35B35Stability of solutions of PDE
Full Text: DOI
[1] Gopalsamy, K. and B. D. Aggarwala. 1980. ”Limit Cycles in Two-species Competition with Time Delays.”J. Aust. math. Soc., Series B (to appear). · Zbl 0458.92014
[2] MacDonald, N. 1976. ”Time Delay in Prey-Predator Models.”Mathl. Biosci. 28, 321--330. · Zbl 0324.92016 · doi:10.1016/0025-5564(76)90130-9
[3] May, R. M. 1973. ”Time Delay Versus Stability in Population Models With Two and Three Trophic Levels.”Ecology,54, 315--325. · doi:10.2307/1934339
[4] -- 1974.Stability and Complexity in Model Ecosystems. Princeton NJ: Princeton University Press.
[5] Miller, R. K. 1966. ”On Volterra’s Population Equation.”SIAM J. appl. Math. 14, 446--452. · Zbl 0161.31901 · doi:10.1137/0114039
[6] Rescigno, A. and I. W. Richardson. 1973. ”The Deterministic Theory of Population Dynamics.” InFoundations of Mathematical Biology Vol. 3, Ed. R. Rosen, pp. 283--360. New York: Academic Press. · Zbl 0347.92021
[7] Volterra, V. 1931.Leçon sur la Théorie Mathématique de la Lutte pour la Vie. Paris: Gauthier-Villars. · Zbl 57.0466.02
[8] Protter, M. H. and H. F. Weinberger. 1967.Maximum Principles of Differential Equations. Englewood Cliffs, N.J.: Prentice Hall. · Zbl 0153.13602