Control systems on semi-simple Lie groups and their homogeneous spaces. (English) Zbl 0453.93011


93B05 Controllability
93C10 Nonlinear systems in control theory
58B25 Group structures and generalizations on infinite-dimensional manifolds
37N99 Applications of dynamical systems
22E46 Semisimple Lie groups and their representations
Full Text: DOI Numdam EuDML


[1] N. BOURBAKI, Algèbre de Lie, Chap. VII-VIII, Hermann.
[2] A. BOREL-G. MOSTOW, On semi-simple automorphisms of Lie algebras, Ann. of Math., vol. 61 (1955), 389-405.0066.0240116,897d · Zbl 0066.02401
[3] J. DIXMIER, Enveloping algebras, North-Holland.0867.17001 · Zbl 0867.17001
[4] H. FREUDENTHAL, Linear Lie groups, Academic Press.0377.22001 · Zbl 0377.22001
[5] V. JURDJEVIC and I. KUPKA, Control systems subordinated to a group action : Accessibility, Journal of Diff. Equations, 39, 2 (1981), 186-211.0531.9300882f:93009 · Zbl 0531.93008
[6] V. JURDJEVIC and H. SUSSMANN, Control systems on Lie groups, Journal of Diff. Equations, (12) (1972), 313-329.0237.9302748 #9519 · Zbl 0237.93027
[7] A. KRENER, A generalization of Chow’s theorem and the bang-bang theorem to non-linear control systems, SIAM J. Control, 11 (1973), 670-676.0243.93009 · Zbl 0243.93009
[8] C. LOBRY, Contrôlabilité des systèmes non-linéaires, SIAM Journal on Control, 8 (1970), 573-605.0207.1520142 #6860 · Zbl 0207.15201
[9] C. LOBRY, Contrôlabilité des systèmes non-linéaires, Proceedings of űOutils et modèles mathématiques pour l’automatique et l’analyse de systèmesƇ, C.N.R.S., Mai 1980, Centre Paul Langevin (CAES-CNRS), Aussois, France. · Zbl 0476.93015
[10] [10] and , On controllability by means of two vector fields, SIAM Journal on Control, 13 (1975), 1271-1281. · Zbl 0313.93006
[11] G. MOSTOW, Lie algebras and Lie groups, Mem. Amer. Math. Soc., n° 14. · Zbl 0080.25201
[12] [12] and , Controllability of non-linear systems, Journal of Diff. Equations, 12 (1972), 95-116. · Zbl 0242.49040
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.