×

zbMATH — the first resource for mathematics

On the sum of observables in a logic. (English) Zbl 0454.03030

MSC:
03G12 Quantum logic
81P10 Logical foundations of quantum mechanics; quantum logic (quantum-theoretic aspects)
PDF BibTeX XML Cite
Full Text: EuDML
References:
[1] BUGAJSKA K., BUGAJSKI S.: On the axioms of quantum mechanics. Bull. Acad. Pol. Scien. Série des. scien. math., astr., et phys., 20, 1971, 3, 231-233.
[2] DELIYANNIS P. C.: Vector space models for abstract quantum logics. J. Math. Phys., 14, 1973, 2, 249-253. · Zbl 0259.02025
[3] DIXMIER J.: Les algèbres d’opérateurs dans l’espace Hilbertien (Algèbres de von Neumann). Gauthier-Villars, 2nd, Paris, 1969. · Zbl 0175.43801
[4] DVUREČENSKIJ A.: On a sum of observables in a logic. Submitted to Math. Slovaca, 1978.
[5] GUDDER S. P.: Spectral methods for a generalized probability theory. Trans. Amer. Math. Soc., 119, 1965, 428-442. · Zbl 0161.46105
[6] GUDDER S. P.: Uniqueness and existence properties of bounded observables. Pac. J. Math., 19, 1966, 1, 81-83. · Zbl 0149.23603
[7] GUDDER S. P.: Joint distributions of observables. J. Math. Mech., 18, 4, 1968, 326-335. · Zbl 0241.60092
[8] PRUGOVEČKI E.: Quantum mechanics in Hilbert space. Acad. Press, N.Y., 1971. · Zbl 0217.44204
[9] VARADARAJAN V. S.: Probability in physics and theorem on simultaneous observability. Comm. Pure Appl. Math., 15, 1962, 189-217. · Zbl 0109.44705
[10] VARADARAJAN V. S.: Geometry of quantum theory. Van Nostrand, New York 1968. · Zbl 0155.56802
[11] ZIERLER N.: Axioms for non-relativistic quantum mechanics. Pac. J. Math., 11, 1961, 1151-1169. · Zbl 0138.44503
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.