×

zbMATH — the first resource for mathematics

Lefschetz-Riemann-Roch for singular varieties. (English) Zbl 0454.14009

MSC:
14C40 Riemann-Roch theorems
14C35 Applications of methods of algebraic \(K\)-theory in algebraic geometry
14B05 Singularities in algebraic geometry
14M10 Complete intersections
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Atiyah, M. F.,Elliptic operators and compact groups. Springer Lecture Notes 401 (1974). · Zbl 0297.58009
[2] Atiyah, M. F. &Segal, G. B., The index of elliptic operators. II.Ann. of Math., 87 (1968), 531–545. · Zbl 0164.24201
[3] Paum, P. Fixed-point formula for singular varieties. To appear.
[4] Baum, P., Fulton, W. &MacPherson, R., Riemann-Roch for singular varieties.Publ. Math. 1HES, 45 (1975), 101–167. · Zbl 0332.14003
[5] Baum, P. Riemann-Roch and topologicalK-theory for singular varieties. Preceding article.
[6] Berthelot, P., Grothendieok, A., Illusie, L. et al., Théorie des intersections et théorème de Riemann-Roch.Séminaire de Géométrie Algébrique du Bois Marie 1966/67.SGA 6, Springer Lecture Notes 225 (1971).
[7] Donovan, P., The Lefschetz-Riemann-Roch formula.Bull. Soc. Math. France, 97 (1969), 257–273. · Zbl 0185.49401
[8] Fulton, W., A fixed point formula for varieties over finite fields.Math. Scand., 42 (1978), 189–196. · Zbl 0417.14006
[9] Fulton, W. & MacPherson, R., Intersecting cycles on an algebraic variety.Real and Complex Singularities, Oslo, 1976. P. Holm, editor, Sijthoff & Noordhoff, (1978), 179–197. · Zbl 0385.14002
[10] Nielsen, H. A., Diagonally linearized coherent sheaves.Bull. Soc. Math. France, 102 (1974), 85–97. · Zbl 0293.14006
[11] Quart, G., Localization theorem inK-theory for singular varieties. Following article. · Zbl 0458.14008
[12] Quillen, D., Higher algebraicK-theory I.Battelle Institute Conference on Algebraic K-theory I (1972) Springer Lecture Notes, 341 (1973), 85–147.
[13] Serre, J.-P.,Algèbre locale, multiplicités. Springer Lecture Notes, 11 (1965).
[14] –Représentations linéaires des groupes finis. Hermann, Paris (1971).
[15] Toledo D. &Tong, Y. L. L., The holomorphic Lefschetz formula.Bull. Amer. Math. Soc., 81 (1975), 1133–1135. · Zbl 0331.14004
[16] Zagier, D. B.,Equivariant Pontrjagin classes and applications to orbit spaces. Springer Lecture Notes, 290 (1972). · Zbl 0238.57013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.