×

Intertwining operators for semisimple groups. II. (English) Zbl 0454.22010


MSC:

22E46 Semisimple Lie groups and their representations

References:

[1] Arthur, J.G.: Harmonic analysis of tempered distributions of semisimple Lie groups of real rank one. Thesis, Yale University, 1970
[2] Arthur, J.G.: Intertwining integrals for cuspidal parabolic subgroups, mimeographed notes. Yale University, 1974
[3] Arthur, J.G.: on the invariant distributions associated to weighted orbital integrals, preprint, 1977
[4] Borel, A., Tits, J.: Compléments à l’article.: ?Groupes, réductifs.? Inst. Hautes Études Sci. Publ. Math. No.41, 253-276 (1972) · Zbl 0254.14018 · doi:10.1007/BF02715545
[5] Bruhat, F.: Sur les représentations induites des groupes de Lie. Bull. Soc. Math. France84, 97-205 (1956) · Zbl 0074.10303
[6] Casselman, W.: The differential equations satisfied by matrix coefficients, manuscript, 1975
[7] Gelbart, S.: Fourier analysis on matrix space. Mem. Amer. Math. Soc.108, 1-77 (1971) · Zbl 0227.43016
[8] Gindikin, S.G., Karpelevi?, F.I.: Plancherel measure for Riemann symmetric spaces of nonpositive curvature. Soviet Math.3, 962-965 (1962) · Zbl 0156.03201
[9] Harish-Chandra: Representations of a semisimple Lie group, on a Banach space I. Trans. Amer. Math. Soc.75, 185-243 (1953) · Zbl 0051.34002 · doi:10.1090/S0002-9947-1953-0056610-2
[10] harish-Chandra: Spherical functions on a semisimple Lie group I. Amer. J. Math.80, 241-310 (1958) · Zbl 0093.12801 · doi:10.2307/2372786
[11] Harish-Chandra: Discrete series for semisimple Lie groups II. Acta Math.116, 1-111 (1966) · Zbl 0199.20102 · doi:10.1007/BF02392813
[12] Harish-Chandra: On the theory of the Eisenstein, integral. Lecture Notes in Math.266, 123-149 Berlin-Heidelberg-New York: Springer 1971
[13] Harish-Chandra: Harmonic analysis on real reductive groups I. J. Functional Anal.19, 104-204 (1975) · Zbl 0315.43002 · doi:10.1016/0022-1236(75)90034-8
[14] Harish-Chandra: Harmonic analysis on real, reductive groups II. Inventiones Math.36, 1-55 (1976) · Zbl 0341.43010 · doi:10.1007/BF01390004
[15] Harish-Chandra: Harmonic analysis on real reductive, groups III. Annals of Math.104, 117-201 (1976) · Zbl 0331.22007 · doi:10.2307/1971058
[16] Helgason, S.: A duality for symmetric spaces with applications to group representations. Advances in Math.5, 1-154 (1970) · Zbl 0209.25403 · doi:10.1016/0001-8708(70)90037-X
[17] Knapp, A.W.: Weyl group of a cuspidal parabolic. Ann. Sci. Éc. Norm. Sup.8, 275-294 (1975) · Zbl 0305.22010
[18] Knapp, A.W., Stein, E.M.: The existence of complementary series, Problems in Analysis: Symposium in Honor of Salomon Bochner, 249-259. Princeton: Princeton University Press, 1970 · Zbl 0208.38001
[19] Knapp, A.W., Stein, E.M.: Singular integrals and the principal series II. Proc. Nat. Acad. Sci. U.S.A.66, 13-17 (1970) · Zbl 0201.14702 · doi:10.1073/pnas.66.1.13
[20] Knapp, A.W., Stein, E.M.: Intertwining operators for semisimple groups. Annals of Math.93, 489-578 (1971) · Zbl 0257.22015 · doi:10.2307/1970887
[21] Knapp, A.W., Stein, E.M.: Irreducibility theorems for the principal series. Lecture Notes in Math.266, 197-214 Berlin-Heidelberg-New York: Springer 1971
[22] Knapp, A.W., Stein, E.M.: Singular integrals and the principal series III. Proc. Nat. Acad. Sci. U.S.A.71, 4622-4624 (1974) · Zbl 0293.22026 · doi:10.1073/pnas.71.11.4622
[23] Knapp, A.W., Stein, E.M.: Singular integrals and the principal series IV. Proc. Nat. Acad. Sci. U.S.A.72, 2459-2461 (1975) · doi:10.1073/pnas.72.6.2459
[24] Knapp, A.W., Stein, E.M.: Intertwining operators forSL(n,R). Studies in Mathematical Physics, Essays in Honor of Valentine Bargmann, 239-267, Princeton: Princeton University Press, 1976
[25] Knapp, A.W., Zuckerman, G.: Classification of irreducible tempered representations of semisimple Lie groups. Proc. Nat. Acad. Sci. U.S.A.73, 2178-2180 (1976) · Zbl 0329.22013 · doi:10.1073/pnas.73.7.2178
[26] Kostant, B.: On the existence and irreducibility of certain series of representations. Bull. Amer. Math. Soc.75, 627-642 (1969) · Zbl 0229.22026 · doi:10.1090/S0002-9904-1969-12235-4
[27] Kostant, B., Rallis, S.: Orbits and representation, associated with symmetric spaces. Amer. J. Math.93, 753-809 (1971) · Zbl 0224.22013 · doi:10.2307/2373470
[28] Kunze, R., Stein, E.M.: Uniformly bounded representations III. Amer. J. Math.89, 385-442 (1967) · Zbl 0195.14202 · doi:10.2307/2373128
[29] Langlands, R.: On the classification of irreducible representations of real algebraic groups, mimeographed notes, Institute for Advanced Study, 1973
[30] Mackey, G.W.: On induced representations of groups. Amer. J. Math.73, 576-592 (1951) · Zbl 0045.30305 · doi:10.2307/2372309
[31] Mili?i?, D.: Notes on asymptotics of admissible representations of semisimple Lie groups, manuscrip, 1976
[32] Schiffmann, G.: Intégrales d’entrelacement et fonctions, de Whittaker. Bull. Soc. Math. France99, 3-72 (1971) · Zbl 0223.22017
[33] Stein, E.M.: Analysis in matrix spaces and some new representations ofSL(N, C). Annals of Math.86, 461-490 (1967) · Zbl 0188.45303 · doi:10.2307/1970611
[34] Vogan, D.A.: The algebraic structure of the representations of semisimple Lie groups I. Annals of Math.109, 1-60 (1979) · Zbl 0424.22010 · doi:10.2307/1971266
[35] Wallach, N.R.: On Harish-Chandra’s generalizedC-functions. Amer. J. Math.97, 386-403 (1975) · Zbl 0312.22010 · doi:10.2307/2373718
[36] Helgason, S.: Differential Geometry and Symmetric Spaces. New York: Academic Press, 1962 · Zbl 0111.18101
[37] Knapp, A.W.: Commutativity of intertwining operators for semisimple groups, manuscript, 1980 · Zbl 0454.22010
[38] Mili?i?, D.: The dual spaces of almost connected reductive groups. Glasnik Mat.9, 273-288 (1974) · Zbl 0299.22006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.