Gilbarg, David; Hörmander, Lars Intermediate Schauder estimates. (English) Zbl 0454.35022 Arch. Ration. Mech. Anal. 74, 297-318 (1980). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 1 ReviewCited in 95 Documents MSC: 35B50 Maximum principles in context of PDEs 35B45 A priori estimates in context of PDEs 35J99 Elliptic equations and elliptic systems Keywords:intermediate Schauder estimates; elliptic differential equation; Lipschitz domains; maximum principle PDF BibTeX XML Cite \textit{D. Gilbarg} and \textit{L. Hörmander}, Arch. Ration. Mech. Anal. 74, 297--318 (1980; Zbl 0454.35022) Full Text: DOI OpenURL References: [1] Gilbarg, D., & N. Trudinger, Elliptic partial differential equations of second order. Springer Verlag, Heidelberg-New York 1977. · Zbl 0361.35003 [2] Hörmander, L., The boundary problems of physical geodesy. Arch. Rational Mech. Anal. 62 (1976), 1–52. · Zbl 0331.35020 [3] Miller, K., Extremal barriers on cones with Phragmén-Lindelöf theorems and other applications. Ann. Mat. Pura Appl. (4) 90 (1971), 297–329. · Zbl 0231.35004 [4] Oddson, K., Phragmén-Lindelöf theorems for elliptic equations in the plane. Trans. Amer. Math. Soc. 145 (1969), 347–356. · Zbl 0198.14204 [5] Pucci, C., Regolarità alla frontiera di soluzione di equazioni ellitiche. Ann. Mat. Pura Appl. 65 (1964), 311–328. · Zbl 0135.15402 [6] Widman, K. O., Inequalities for the Green function and boundary continuity of the gradient of solutions of elliptic differential equations. Math. Scand. 21 (1967), 17–37. · Zbl 0164.13101 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.