zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Fixed point theorems without convexity. (English) Zbl 0454.47044

MSC:
47H10Fixed-point theorems for nonlinear operators on topological linear spaces
54H25Fixed-point and coincidence theorems in topological spaces
WorldCat.org
Full Text: Numdam EuDML
References:
[1] AMANN H. ( 1975 ) : Nonlinear operators in ordered Banach spaces and some applications to nonlinear boundary value problems in Nonlinear operators and the calculus of variations . Bruxelles 1975 , Lecture notes in math n^\circ 543, Springer Verlag. New-York, 1-55. MR 58 #23793 | Zbl 0345.47045 · Zbl 0345.47045
[2] ASSAD N.A. - KIRK W.A. ( 1972 ) : Fixed point theorems for set-valued mappings of contractive type . Pacific J. Math. 43 (3), 553-561. Article | MR 49 #6210 | Zbl 0239.54032 · Zbl 0239.54032 · doi:10.2140/pjm.1972.43.553 · http://minidml.mathdoc.fr/cgi-bin/location?id=00073202
[3] AUBIN J-P. ( 1977 ) : Microcours : gradients généralisés . Univ. de Montréal. Cahiers de l’IRMADE.
[4] AUBIN J-P. : Mathematical methods of game and economic theory (to be published) by North Holland. Zbl 0452.90093 · Zbl 0452.90093
[5] BELLUCE L.P. - KIRK W.A. ( 1969 ) : Some fixed point theorems in metric and Banach spaces . Canadian Bull. Math. 12, 481-492. MR 40 #3388 | Zbl 0195.42901 · Zbl 0195.42901 · doi:10.4153/CMB-1969-062-9
[6] BIRKHOFF G. ( 1948 ) : Lattice theory . Amer. Math. Soc. Colloq. Publ. XXV, New-York. MR 10,673a | Zbl 0033.10103 · Zbl 0033.10103
[7] BONY J.M. ( 1969 ) : Principe du maximum, inégalité de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés . Ann. Inst. Fourier. Grenoble 19, 277-304. Numdam | MR 41 #7486 | Zbl 0176.09703 · Zbl 0176.09703 · doi:10.5802/aif.319 · numdam:AIF_1969__19_1_277_0 · eudml:73982
[8] BORWEIN J. - O’BRIEN R. ( 1976 ) : Tangent cones and convexity . Canad. Math. Bull. 19 (3) 257-261. MR 56 #12835 | Zbl 0364.90079 · Zbl 0364.90079 · doi:10.4153/CMB-1976-040-x
[9] BOURGIN D.G. ( 1973 ) : Fixed points and minimax theorems . Pacific. J. Math 45, 403-412. Article | MR 49 #1512 | Zbl 0275.55011 · Zbl 0275.55011 · doi:10.2140/pjm.1973.45.403 · http://minidml.mathdoc.fr/cgi-bin/location?id=00073067
[10] BREZIS H. ( 1965 ) : Points fixes . Séminaire Choquet 4è année, 11-01, 11-23. Numdam | Zbl 0151.20601 · Zbl 0151.20601 · numdam:SC_1964-1965__4__A10_0
[11] BREZIS H. ( 1967 ) : Sur certains problèmes non linéaires . Séminaire Choquet, Paris. 6e année, 18-01, 18-18. Numdam | MR 38 #5072 | Zbl 0169.18702 · Zbl 0169.18702 · numdam:SC_1966-1967__6_2_A7_0 · eudml:110406
[12] BREZIS H. - BROWDER F.E. ( 1976 ) : A general ordering principle in nonlinear functional analysis . Advances in Math 21, 355-168. MR 54 #13641 | Zbl 0339.47030 · Zbl 0339.47030 · doi:10.1016/S0001-8708(76)80004-7
[13] BRODSK?I M.S. - MILMAN D.P. ( 1948 ) : On the center of a convex set (russian) . Dokl. Akad. Nauk SSSR, 59, 837-840. Zbl 0030.39603 · Zbl 0030.39603
[14] BRØNSTED A. ( 1976 ) : Fixed points and partial orders . Proc. Amer. Math. Soc. 60 365-366. MR 54 #5915 | Zbl 0343.47043 · Zbl 0343.47043 · doi:10.2307/2041175
[15] BROWDER F.E. ( 1965 ) : Nonexpansive nonlinear operators in a Banach space . Proc. Nat. Acad. Sci. 54, 1041-1044. MR 32 #4574 | Zbl 0128.35801 · Zbl 0128.35801 · doi:10.1073/pnas.54.4.1041
[16] BROWDER F.E. ( 1965 ) : Fixed points theorems on infinite dimensional manifolds . Trans. Amer. Math. Soc. 119, 179-194. MR 33 #3287 | Zbl 0132.18803 · Zbl 0132.18803 · doi:10.2307/1994046
[17] BROWDER F.E. ( 1967 ) : Nonlinear mappings of nonexpansive and accretive type in Banach spaces . Bull. Amer. Math. Soc. 73, 875-882. Article | MR 38 #581 | Zbl 0176.45302 · Zbl 0176.45302 · doi:10.1090/S0002-9904-1967-11823-8 · http://minidml.mathdoc.fr/cgi-bin/location?id=00221328
[18] BROWDER F.E. ( 1968 ) : The fixed-point theory of multi-valued mappings in topological vector spaces , Math. Ann. 177, 283-301. MR 37 #4679 | Zbl 0176.45204 · Zbl 0176.45204 · doi:10.1007/BF01350721 · eudml:161725
[19] BROWDER F.E. ( 1975 ) : The Lefschetz fixed point theorem and asymptotic fixed point theorems in Partial Differential Equations and related topics . Lecture Notes in Math. n^\circ 446, Springer-Verlag, New-York, 96-122. MR 55 #6245 | Zbl 0312.55007 · Zbl 0312.55007
[20] BROWN R.F. ( 1965 ) : On the Lefschetz fixed point theorem . Amer. J. Math. 87, 1-10. MR 30 #5320 | Zbl 0134.19003 · Zbl 0134.19003 · doi:10.2307/2373220
[21] BROWN R.F. ( 1971 ) : The Lefschetz fixed point theorem , Scott, Foresman., Glenview, Illinois. MR 44 #1023 | Zbl 0216.19601 · Zbl 0216.19601
[22] CARISTI J. ( 1975 ) : Fixed point theorem for mappings satisfying inwardness conditions . Trans. Amer. Math. Soc. 215, 241-251. MR 52 #15132 | Zbl 0305.47029 · Zbl 0305.47029 · doi:10.2307/1999724
[23] CARISTI J. - KIRK W.A. ( 1975 ) : Geometric fixed point theory and inwardness conditions in the Geometry of metric and linear spaces , Michigan 1974 , L.M. Kelly editor, Lecture Notes in Math. N^\circ 490, Springer Verlag New-York, 74-83. MR 53 #3806 | Zbl 0315.54052 · Zbl 0315.54052
[24] CONTI G. - NISTRI P. ( 1975 ) : A fixed point theorem for non compact acyclic-valued maps . Rend. Accad. Sc. Fis. Mat. Napoli 42 (4), 510-517. MR 55 #8896 | Zbl 0378.47029 · Zbl 0378.47029
[25] CORNET B. ( 1975 ) : Fixed point and surjectivity theorems for correspondances ; applications . Cahiers Math. de la décision, Univ. Paris-Dauphine n^\circ 7521.
[26] DEIMLING K. ( 1974 ) : Zeros of accretive operators . Manuscripta Math 13, 365-374. MR 50 #3030 | Zbl 0288.47047 · Zbl 0288.47047 · doi:10.1007/BF01171148 · eudml:154274
[27] DOTSON W.G. ( 1972 ) : Fixed point theorems for non expansive mappings on star-shaped subsets of Banach spaces . J. London Math Soc. 4 (2), 408-410. MR 45 #5837 | Zbl 0229.47047 · Zbl 0229.47047 · doi:10.1112/jlms/s2-4.3.408
[28] EDELSTEIN M. ( 1961 ) : An extension of Banach’s contraction principle . Proc. Amer. Math. Soc. 12, 7-10. MR 22 #11375 | Zbl 0096.17101 · Zbl 0096.17101 · doi:10.2307/2034113
[29] EDELSTEIN M. ( 1962 ) : On fixed and periodic points under contractive mappings . J. London Math. Soc. 37, 74-79. MR 24 #A2936 | Zbl 0113.16503 · Zbl 0113.16503 · doi:10.1112/jlms/s1-37.1.74
[30] EDELSTEIN M. ( 1964 ) : On non expansive mappings . Proc. Amer. Math. Soc. 15, 689-695. MR 29 #2780 | Zbl 0124.16004 · Zbl 0124.16004 · doi:10.2307/2034579
[31] EDELSTEIN M. ( 1968 ) : On nearest points of sets in uniformly convex Banach spaces . J. London Math. Soc. 43, 375-377. MR 37 #1954 | Zbl 0183.40403 · Zbl 0183.40403 · doi:10.1112/jlms/s1-43.1.375
[32] EDELSTEIN M. ( 1975 ) : On some aspects of fixed point theory in Banach spaces in the Geometry of metric and linear spaces , Michigan 1974 , L.M. Kelly editor. Lecture notes in Math. n^\circ 490, Springer-Verlag New-York, 84-90. MR 53 #6368 | Zbl 0316.47036 · Zbl 0316.47036
[33] EILENBERG S. - MONTGOMERY D. ( 1946 ) : Fixed point theorems for multi-valued transformations . Amer. J. Math. 58, 214-222. MR 8,51a | Zbl 0060.40203 · Zbl 0060.40203 · doi:10.2307/2371832
[34] EISENFELD J. - LAKSHMIKANTHAM V. ( 1976 ) : Fixed point theorems on closed sets through abstract cones . Univ. of Texas at Arlington, tech. report n^\circ 89.
[35] EKELAND I. ( 1974 ) : On the variational principle . J. Math. Anal. and Appl. 47, 324-353. MR 49 #11344 | Zbl 0286.49015 · Zbl 0286.49015 · doi:10.1016/0022-247X(74)90025-0
[36] FAKHOURY H. ( 1972 ) : Sélections linéaires associées au théorème de Hahn-Banach . J. Funct. Anal. 11, 436-452. MR 50 #955 | Zbl 0252.46023 · Zbl 0252.46023 · doi:10.1016/0022-1236(72)90065-1
[37] FAN K. ( 1961 ) : A generalization of Tychonoff’s fixed point theorem , Math. Ann. 142 305-310. MR 24 #A1120 | Zbl 0093.36701 · Zbl 0093.36701 · doi:10.1007/BF01353421 · eudml:160834
[38] FAN K. ( 1969 ) : Extension of two fixed points of F.E. Browder . Math. 2 112, 234-240. MR 40 #4830 | Zbl 0185.39503 · Zbl 0185.39503 · doi:10.1007/BF01110225 · eudml:171237
[39] FORT Jr. M.K. ( 1950 ) : Essential and non essential fixed points . Amer. J. Math. 72, 315-322. MR 11,609b | Zbl 0036.13001 · Zbl 0036.13001 · doi:10.2307/2372035
[40] FOURNIER G. ( 1975 ) : Généralisation du théorème de Lefschetz pour des espaces non compacts I, II, III , Bull. Acad. Pol. Sci. 23 (6), 693-699 ; 701-706 ; 707-711. MR 51 #14031 | Zbl 0307.55006 · Zbl 0307.55006
[41] GATICA J.A. ( 1974 ) : Fixed point theorems for k-set contractions and pseudo-contractive mappings . J. Math. Anal. Appl. 46 (3), 555-564. MR 49 #11328 | Zbl 0277.47035 · Zbl 0277.47035 · doi:10.1016/0022-247X(74)90262-5
[42] GLICKSBERG I.L. ( 1952 ) : A further generalization of the Kakutani fixed point theorem, with application to Nash equilibrium points . Proc. Amer. Math. Soc. 3, 170-174. MR 13,764g | Zbl 0046.12103 · Zbl 0046.12103 · doi:10.2307/2032478
[43] GOEBEL K. ( 1969 ) : An elementary proof of the fixed point theorem of Browder and Kirk . Michigan Math. J. 16, 381-384. Article | MR 40 #4831 | Zbl 0174.19304 · Zbl 0174.19304 · doi:10.1307/mmj/1029000322 · http://minidml.mathdoc.fr/cgi-bin/location?id=00061343
[44] GOHDE D. ( 1965 ) : Zum prinzip der kontraktiven abbildung . Math. Nach. 30, 251-258. MR 32 #8129 | Zbl 0127.08005 · Zbl 0127.08005 · doi:10.1002/mana.19650300312
[45] GORNIEWICZ L. ( 1973 ) : Some consequences of the Lefschetz fixed point theorem . Bull. Acad. Pol. Sc. 21 (2) 165-170. MR 48 #3036 | Zbl 0249.54022 · Zbl 0249.54022
[46] GOSSEZ J-P. - LAMI-DOZO E. ( 1969 ) : Structure normale et base de Schauder . Bull. CI. Sc. Ac. R. Belgique 55, 673-681. MR 41 #795 | Zbl 0192.46903 · Zbl 0192.46903
[47] GOSSEZ J.P. - LAMI-DOZO E. ( 1972 ) : Some geometric properties related to the fixed point theory for nonexpansive mappings . Pacific J. Math 40 (3), 565-573. Article | MR 46 #9815 | Zbl 0223.47025 · Zbl 0223.47025 · doi:10.2140/pjm.1972.40.565 · http://minidml.mathdoc.fr/cgi-bin/location?id=00073431
[48] GRANAS A. ( 1972 ) : Generalizing the Hopf-Lefschetz fixed point theorem for non-compact A.N.R.S. Symp. Infinite dimensional topology, Baton Rouge, R.D. Anderson ed. Annals of Math. Study n^\circ 69, Princeton Univ. Press, Princeton New-Jersey, 119-130. MR 53 #14475 | Zbl 0235.55008 · Zbl 0235.55008
[49] GRANAS A. ( 1976 ) : Sur la méthode de continuité de Poincaré , C.R. Acad. Sci. Paris 282, 983-985. MR 53 #11664 | Zbl 0348.47039 · Zbl 0348.47039
[50] HALPERN B.R. ( 1965 ) : Fixed point theorems for outward maps . Ph. D. Thesis, Univ. Calif. Los Angeles.
[51] HALPERN B.R. ( 1970 ) : Fixed point theorems for set-valued maps in infinite dimensional spaces , Math. Ann. 189, 87-98. MR 42 #8357 | Zbl 0191.14701 · Zbl 0191.14701 · doi:10.1007/BF01350295 · eudml:162063
[52] HALPERN B.R. - BERGMAN G. ( 1968 ) : A fixed point theorem for inward and outward maps . Trans. Amer. Math. Soc. 130, 353-358. MR 36 #4397 | Zbl 0153.45602 · Zbl 0153.45602 · doi:10.2307/1994976
[53] HIMMELBERG C.J. , PORTER J.R. , VAN VLECK F.S. ( 1969 ) : Fixed point theorems for condensing multifunctions . Proc. Amer. Math. Soc. 23, 635-641, MR 39 # 7480. MR 39 #7480 | Zbl 0195.14902 · Zbl 0195.14902 · doi:10.2307/2036602
[54] HOLMES R.D. ( 1976 ) : Fixed points for local radial contractions , in Swaninathan S. ( 1976 ). pp. 79-89. Zbl 0373.54041 · Zbl 0373.54041
[55] JAWOROWSKI J.W. ( 1970 ) : Set-valued fixed points theorems for approximative retracts in Set-valued mappings, selections, and topological properties of 2X Lecture notes in Math. n^\circ 171, Springer Verlag, New-York, 34-390. MR 43 #4027 | Zbl 0206.52101 · Zbl 0206.52101
[56] KAKUTANI S. ( 1938 ) : Two fixed point theorems concerning bicompact convex sets . Proc. Imp. Acad. Tokyo 14, 242-245. Zbl 0020.07906 | JFM 64.1101.03 · Zbl 0020.07906 · doi:10.3792/pia/1195579652 · http://www.emis.de/cgi-bin/JFM-item?64.1101.03
[57] KIRK W.A. ( 1965 ) : A fixed point theorem for mappings which do not increase distance . Amer. Math. Monthly 72, 1004-1006. MR 32 #6436 | Zbl 0141.32402 · Zbl 0141.32402 · doi:10.2307/2313345
[58] KIRK W.A. ( 1970 ) : Fixed points theorems for non expansive mappings . in Nonlinear functional analysis, F.E. Browder editor. Proc. Symp. Pure Math n^\circ 18, vol. 1, Amer. Math. Soc. Providence R.I., 162-134. MR 42 #6677 | Zbl 0227.47046 · Zbl 0227.47046
[59] KIRK W.A. ( 1976 ) : Caristi’s fixed point theorem and the theory of normal solvability . in Fixed point theory and its applications, S. Swaminanthan ed. Academic Press, New-York, 109-120. MR 56 #13002 | Zbl 0377.47042 · Zbl 0377.47042
[60] KNASTER B. ( 1928 ) : Un théorème sur les fonctions d’ensembles . Ann. Soc. Pol. Math. 6, 133-134. JFM 54.0091.04 · Zbl 54.0091.04
[61] KUHFITTIG P. : Fixed point theorems for mappings with non convex domain and range . Rocky Mountain J. Math. 7 (I) ( 1977 ) 141-145. MR 55 #9062 | Zbl 0346.47047 · Zbl 0346.47047 · doi:10.1216/RMJ-1977-7-1-141
[62] LASRY J.M. - ROBERT R. ( 1976 ) : Analyse non lineaire multivoque . Cahiers Math. de la Décision, Univ. Paris-Dauphine n^\circ 7611.
[63] LEADER S. ( 1977 ) : Fixed points for operators on metric spaces with conditional uniform equivalence of orbits . J. Math. Anal. Appl. 61 (2), 466-474. MR 58 #7590 | Zbl 0368.54016 · Zbl 0368.54016 · doi:10.1016/0022-247X(77)90131-7
[64] LERAY J. ( 1972 ) : Fixed point index and Lefschetz number . Symp. infinite dimensional topology. Baton-Rouge, R.D. Anderson ed. Annals of Math. Studies n^\circ 69, Princeton Univ. Press, Princeton New-Jersey, 219-234. MR 53 #11646 | Zbl 0235.55007 · Zbl 0235.55007
[65] LIM T.C. ( 1976 ) : Remarks on some fixed point theorems . Proc. Amer. Math. Soc. 60 (1) 179-182. MR 54 #11120 | Zbl 0346.47046 · Zbl 0346.47046 · doi:10.2307/2041136
[66] LIM T.C. ( 1977 ) : Fixed point theorems for mappings of non expansive type . Proc. Amer. Math. Soc. 66 (1) 69-74. MR 57 #13593 | Zbl 0371.47043 · Zbl 0371.47043 · doi:10.2307/2041532
[67] MARTELLI M. - VIGNOLI A. ( 1974 ) : A generalization of Leray-Schauder condition . Atti. Accad. Naz. Lincei (8) 57 (5), 374-379. MR 54 #5918 | Zbl 0326.47054 · Zbl 0326.47054
[68] MARKIN J.T. ( 1969 ) : A fixed point theorem for set valued mappings . Bull. Amer. Math. Soc. 74 (4), 639-640. Article | MR 37 #3409 | Zbl 0159.19903 · Zbl 0159.19903 · doi:10.1090/S0002-9904-1968-11971-8 · http://minidml.mathdoc.fr/cgi-bin/location?id=00221207
[69] MARTIN R.M. Jr ( 1973 ) : Differential equations on closed subsets of a Banach space Trans. Amer. Math. Soc. 179, 399-414. MR 47 #7537 | Zbl 0293.34092 · Zbl 0293.34092 · doi:10.2307/1996511
[70] MAYER C. ( 1965 ) : Points invariants dans les espaces localement convexes . Séminaire Choquet 4e année, 10-01, 10-11. Numdam | Zbl 0151.20503 · Zbl 0151.20503 · eudml:110377
[71] MEIR A. - KEELER E. ( 1969 ) : A theorem on contraction mappings . J. Math. Anal. Appl. 28, 326-329, MR 40#3530. MR 40 #3530 | Zbl 0194.44904 · Zbl 0194.44904 · doi:10.1016/0022-247X(69)90031-6
[72] MEYER P.A. ( 1966 ) : Probabilités et potentiel . Act. Sci. et Ind. N^\circ 1318, Hermann Paris. MR 34 #5118 | Zbl 0138.10402 · Zbl 0138.10402
[73] NADLER S.B. ( 1969 ) : Multivalued contraction mappings . Pacific J. Math. 30, 475-488. Article | MR 40 #8035 | Zbl 0187.45002 · Zbl 0187.45002 · doi:10.2140/pjm.1969.30.475 · http://minidml.mathdoc.fr/cgi-bin/location?id=00074191
[74] OPIAL Z. ( 1967 ) : Weak convergence of the sequence of successive approximations for nonexpansive mappings . Bull. Amer. Math. Soc. 73, 591-597. Article | MR 35 #2183 | Zbl 0179.19902 · Zbl 0179.19902 · doi:10.1090/S0002-9904-1967-11761-0 · http://minidml.mathdoc.fr/cgi-bin/location?id=00232474
[75] OPIAL Z. ( 1967 ) : Nonexpansive and monotone mappings in Banach spaces . Lecture Notes 67-1, Division of Applied Math. Brown Univ. · Zbl 0179.19902
[76] PENOT J.P. ( 1976 ) : A short constructive proof of Caristi’s fixed point theorem . Publications Math. de Pau, X-1 - X-3.
[77] PETRYSHYN V.W. ( 1973 ) : Fixed point theorems for various classes of 1-set contractive and 1-ball contractive mappings in Banach spaces . Trans. Amer. Math. Soc. 182, 323-352. MR 48 #7030 | Zbl 0277.47033 · Zbl 0277.47033 · doi:10.2307/1996537
[78] PETRYSHYN V.W. - FITZPATRICK P.M. ( 1974 ) : Fixed-point theorems for multivalued non-compact inward maps . J. Math. Anal. and Appl. 46 (3), 756-767. Zbl 0287.47038 · Zbl 0287.47038 · doi:10.1016/0022-247X(74)90271-6
[79] POWERS M.J. ( 1970 ) : Multivalued mappings and Lefschetz fixed point theorems . Proc. Cambridge Phil. Soc. 68, 619-630. MR 41 #9248 | Zbl 0201.25001 · Zbl 0201.25001
[80] POWERS M.J. ( 1972 ) : Lefschetz fixed point theorems for a new class of multivalued maps . Pacific J. Math 42, 211-220. Article | MR 48 #12508 | Zbl 0244.55007 · Zbl 0244.55007 · doi:10.2140/pjm.1972.42.211 · http://minidml.mathdoc.fr/cgi-bin/location?id=00073348
[81] REICH S. ( 1972 ) : Fixed points in locally convex spaces , Math. Z 125, 17-31. Article | MR 46 #6110 | Zbl 0216.17302 · Zbl 0216.17302 · doi:10.1007/BF01111112 · eudml:171687
[82] REICH S. ( 1976 ) : On fixed point theorems obtained from existence theorems for differential equations . J. Math. Anal. Appl. 54, 26-36. MR 53 #6373 | Zbl 0328.47034 · Zbl 0328.47034 · doi:10.1016/0022-247X(76)90232-8
[83] REICH S. : Approximate selections, best approximations, fixed points, and invariant sets (to appear). Zbl 0375.47031 · Zbl 0375.47031 · doi:10.1016/0022-247X(78)90222-6
[84] REINERMANN J. ( 1972 ) : Fixed point theorems for generalized contractions . Comment. Math. Univ. Carol 13 (4) 617-627. MR 49 #1244 | Zbl 0256.47039 · Zbl 0256.47039 · eudml:16522
[85] REINERMANN J. - SCHŐNEBERG R. ( 1976 ) : Some results and problems in the fixed point theory for nonexpansive and pseudocontractive mappings in Hilbert space . in Swaminathan ( 1976 ) 187-196. Zbl 0375.47034 · Zbl 0375.47034
[86] ROGALSKI M. ( 1972 ) : Surjectivité d’applications multivoques dans les convexes compacts . Bull. Soc. Math. de France, 96, 83-87. MR 48 #2706 | Zbl 0227.54012 · Zbl 0227.54012
[87] SEHGAL V.M. ( 1969 ) : A fixed point theorem for mappings with a contractive iterate . Proc. Amer. Math. Soc. 23, 631-634. MR 40 #3531 | Zbl 0186.56503 · Zbl 0186.56503 · doi:10.2307/2036601
[88] SEHGAL V.M. ( 1977 ) : A simple proof of a theorem of Ky Fan . Proc. Amer. Math. Soc. 63 (2) ; 368-369. MR 55 #8905 | Zbl 0355.47038 · Zbl 0355.47038 · doi:10.2307/2041820
[89] SIEGEL J. ( 1977 ) : A new proof of Caristi’s fixed point theorem . Proc. Amer. Math. Soc. 66 (1) 54-56. MR 56 #16606 | Zbl 0369.54022 · Zbl 0369.54022 · doi:10.2307/2041528
[90] SMART D.R. ( 1974 ) : Fixed point theorems , Cambridge Univ. Press. MR 57 #7570 | Zbl 0297.47042 · Zbl 0297.47042
[91] SWAMINATHAN S. ( 1976 ) : Fixed point theory and its applications . Academic Press, New-York. MR 54 #11112 | Zbl 0363.00010 · Zbl 0363.00010
[92] TALMAN L.A. ( 1977 ) : Fixed points of differentiable maps in ordered locally convex spaces . Ph. D. thesis Univ. of Kansas. · Zbl 0423.54039
[93] TARTAR L. ( 1974 ) : Inequations variationnelles abstraites . C.R. Acad. Sc. Paris, 278, 1193-1196. MR 49 #9703 | Zbl 0334.49003 · Zbl 0334.49003
[94] TERKELSEN F. ( 1974 ) : A short proof of Fan’s fixed point theorem . Proc. Amer. Math. Soc. 42 ( 1974 ) 643-644. Zbl 0301.47043 · Zbl 0301.47043 · doi:10.2307/2039562
[95] VAN DER WALT T. ( 1967 ) : Fixed and almost fixed points . Math. Center Tracts, Amsterdam. · Zbl 0139.40801
[96] VIDOSSICH G. : How to get zeros of nonlinear operators using the theory of ordinary differential equations . Actas Sem. Anal. Func. Sao Paulo (to appear).
[97] WEINSTEIN A. ( 1968 ) : A fixed point theorem for positively curved manifolds . J. Math. Mech. 18 (2), 149-153. MR 37 #3478 | Zbl 0159.51401 · Zbl 0159.51401
[98] WEINSTEIN A. ( 1977 ) : Lectures an symplectic manifolds . CBMS Regional Conference Univ. North Carolina (lecture n^\circ 7). Amer. Math. Soc. Providence, R.I. MR 57 #4244 | Zbl 0406.53031 · Zbl 0406.53031
[99] WONG C.S. ( 1976 ) : On a fixed point theorem of contractive type . Proc. Amer. Math. Soc. 57 (2), 283-284. MR 53 #11596 | Zbl 0329.54042 · Zbl 0329.54042 · doi:10.2307/2041206