×

zbMATH — the first resource for mathematics

On the solution of optimal control problems involving parameters and general boundary conditions. (English) Zbl 0454.49017

MSC:
49K15 Optimality conditions for problems involving ordinary differential equations
90C52 Methods of reduced gradient type
PDF BibTeX XML Cite
Full Text: EuDML
References:
[1] V. A. Trojckij: Variational problems of optimization of control processes. Prikladnaja matematika i mechanika 26 (1962), 1, 29-38. In Russian.
[2] L. T. Fan C. S. Wang: The Discrete Maximum Principle. Wiley, New York 1966.
[3] S. Gonzales A. Miele: Sequential Gradient-Restoration Algorithm for Optimal Control Problems with General Boundary Conditions. Aero-Astronautics Report No. 142, Rice University, Houston 1978. · Zbl 0388.49019
[4] S. Gonzales A. Miele: Sequential Gradient-Restoration Algorithm for Optimal Control Problems with Nondifferential Constraints and General Boundary Conditions. Aero-Astronautics Report No. 143, Rice University, Houston 1978. · Zbl 0388.49019
[5] S. Gonzales A. Miele: Sequential gradient-restoration algorithm for optimal control problems with general boundary conditions. J. Optimization Theory and Appl. 26 (1978), 3, 395-425. · Zbl 0406.49019
[6] J. Fidler J. Doležal: On the Solution of Optimal Control Problems with General Boundary Conditions. Research Report No. 956, Institute of Information Theory and Automation, Prague 1979. In Czech.
[7] J. Doležal P. Černý: The application of optimal control methods to the determination of multifunctional catalysts. 23rd CHISA Conference, Mariánské Lázně 1976. See also: Automatizace 21 (1978), 1,3-8. In Czech.
[8] A. Miele R. R. Iyer: Modified quasilinearization method for solving nonlinear, two-point boundary-value problems. J. Optimization Theory Appl. 5, (1970), 5, 382-399. · Zbl 0184.19905
[9] J. Doležal: Modified quasilinearization method for the solution of implicite nonlinear two-point boundary-value problems for difference systems. The 5th Symposium on Algorithms ”ALGORITHMS’ 79”, Vysoké Tatry 1979, 259-271. In Czech.
[10] J. Doležal J. Fidler: On the numerical solution of implicite two-point boundary-value problems. Kybernetika 15 (1979), 3, 222-230. · Zbl 0404.65049
[11] M. R. Hestenes: Calculus of Variations and Optimal Control Theory. Wiley, New York 1966. · Zbl 0173.35703
[12] A. E. Bryson Y. C. Ho: Applied Optimal Control. Ginn and Company, Waltham, Massachusetts 1969.
[13] A. Miele B. P. Mohanty A. K. Wu: Conversion of Optimal Control Problems with Free Initial State Into Optimal Control Problems with Fixed Initial State. Aero-Astronautics Report No. 130, Rice University, Houston 1976. · Zbl 0347.49027
[14] J. Doležal: Parameter optimization for two-player zero-sum differential games. Trans. of the ASME, Ser. G., J. Dynamic Systems, Measurement and Control 101 (1979), 4, 345-349. · Zbl 0421.90091
[15] J. Doležal: Parameter optimization in nonzero-sum differential games. Kybernetika 16 (1980), 1, 54-70. · Zbl 0432.90098
[16] N. U. Ahmed N. D. Georganas: On optimal parameter selection. IEEE Trans. Automatic Control AC-18 (1973), 3, 313-314. · Zbl 0263.49016
[17] S. M. Roberts J. S. Shipman: Two-Point Boundary Value Problems: Shooting Methods. American Elsevier, New York 1972. · Zbl 0239.65061
[18] J. Doležal: A gradient-type algorithm for the numerical solution of two-player zero-sum differential games. Kybernetika 14 (1978), 6, 429-446. · Zbl 0398.90119
[19] P. Černý: Digital Simulation Program for the Solution of Two-Point Boundary-Value Problems. Research Report No. 639, Institute of Information Theory and Automation, Prague 1975. In Czech.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.