×

zbMATH — the first resource for mathematics

Conjugate gradient algorithm for optimal control problems with parameters. (English) Zbl 0454.49027
MSC:
90C52 Methods of reduced gradient type
49K15 Optimality conditions for problems involving ordinary differential equations
90C31 Sensitivity, stability, parametric optimization
PDF BibTeX XML Cite
Full Text: EuDML
References:
[1] L. S. Lasdon S. K. Mitter A. D. Waren: The conjugate gradient method for optimal control problems. IEEE Trans. Automatic Control AC-12 (1967), 2, 132-138.
[2] L. S. Lasdon A. D. Waren R. K. Rice: An interior penalty method for inequality constrained optimal control problems. IEEE Trans. Automatic Control AC-12 (1967), 4, 388-395.
[3] B. Pagurek C. M. Woodside: The conjugate gradient method for optimal control problems with bounded control variables. Automatica 4 (1968), 5/6, 337-349. · Zbl 0206.16501
[4] V. H. Quintana E. J. Davison: Clipping-offgradient algorithms to compute optimal controls with constrained magnitude. Int. J. Control 20 (1974), 2, 243-255. · Zbl 0291.49023
[5] J. C. Heideman A. V. Levy: Sequential conjugate-gradient-restoration algorithm for optimal control problems. J. Optimiz. Theory Appl. 15 (1975), 2, 203 - 244. · Zbl 0277.49013
[6] H. N. Koivo R. V. Mayorga: A robust conjugate-gradient algorithm for optimal control problems. Preprints of 7th Congress of IFAC, Helsinki 1978, Vol. 2, 1093-1100. Pergamon Press, Oxford 1978.
[7] D. A. Pierre: Optimization Theory with Applications. Wiley, New York 1969. · Zbl 0205.15503
[8] N. U. Ahmed N. D. Georganas: On optimal parameter selection. IEEE Trans. Automatic Control AC-18 (1973), 4, 313-314. · Zbl 0263.49016
[9] A. Miele J. N. Damoulakis: Modifications and extensions of the sequential gradient-restoration algorithm for optimal control theory. Journal of The Franklin Institute 294 (1972), 1, 23-42. · Zbl 0279.65053
[10] J. Doležal: Optimal parameter estimation in two-player zero - sum differential games. Trans. of the Eight Prague Conference of lnformation Theory,..., Vol. A. Academia, Prague, 1978, 143-156.
[11] J. Fidler J. Doležal: On the solution of optirral control problems with general boundary conditions. Research Report ÚTIA ČSAV, No. 956, Prague 1979
[12] A. Miele R. E. Pritchard J. N Damoulakis: Sequential gradient-restoration algorithm for optimal control problems. J. Optimiz. Theory and Appl. 5 (1970), 4, 235-282. · Zbl 0192.51802
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.