Geodesic Ricci mappings of two-symmetric Riemann spaces. (English) Zbl 0454.53013


53B20 Local Riemannian geometry
53C25 Special Riemannian manifolds (Einstein, Sasakian, etc.)
53C35 Differential geometry of symmetric spaces


Zbl 0442.53023
Full Text: DOI


[1] N. S. Sinyukov, ?Geodesic mappings of Riemann spaces onto symmetric spaces,? Dokl. Akad. Nauk SSSR,98, 21-23 (1954).
[2] N. S. Sinyukov, ?Geodesic mappings of Riemann spaces,? Tr. III Vse. Mat. S’ezda,1, 167-168 (1956).
[3] I. Mikesh, ?Geodesic mappings of semisymmetric Riemann spaces,? Dep. VINITI, 3924 (1976).
[4] Sumimoto Takeshi, ?Projective and conformal transformations in compact Riemmanian manifolds,? Tensor,9, No. 2, 113-135 (1959). · Zbl 0090.38302
[5] T. Nagano, ?The projective transformation on a space with parallel Ricci tensor,? K?dai Math. Sem. Reports,11, No. 3, 131-138 (1959). · Zbl 0097.37503 · doi:10.2996/kmj/1138844182
[6] Akbar-Zadeh Hassan and R. Couty, ?Espaces à tenseur de Ricci Parallèle admettant des transformations projectives,? C.R. Acad. Sci.,284, No. 15, A891-A893 (1977). · Zbl 0345.53027
[7] N. S. Sinyukov, ?Equidistant Riemann spaces,? Nauch. Ezhgodnik Odessk. Univ., 133-135 (1957).
[8] N. S. Sinyukov, ?An invariant transformation of Riemann spaces with common geodesics,? Dokl. Akad. Nauk SSSR,137, No. 6, 1312-1314 (1961). · Zbl 0106.15003
[9] N. S. Sinyukov, ?The theory of geodesic mappings of Riemann spaces,? Dokl. Akad. Nauk SSSR,169, No. 4, 770-772 (1966). · Zbl 0148.42301
[10] V. F. Kagan, Subprojective Spaces [in Russian], Nauka, Moscow (1961).
[11] R. Deszcz, ?On some Riemannian manifolds admitting a concircular vector field,? Demon-str. Math.,9, No. 3, 487-495 (1976). · Zbl 0346.53009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.