×

Spinors, algebraic geometry, and the classification of second-order symmetric tensors in general relativity. (English) Zbl 0454.53020

MSC:

53B30 Local differential geometry of Lorentz metrics, indefinite metrics
53A45 Differential geometric aspects in vector and tensor analysis
53C27 Spin and Spin\({}^c\) geometry
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bel, L. (1962).Cahier de Physique,16, 59.
[2] Collinson, C. D., and Shaw, R. (1972).International journal of Theoretical Physics,6, 347. · doi:10.1007/BF01258728
[3] Cormack, W. J., and Hall, G. S. (1979a).Journal of Physics A,12, 55. · Zbl 0401.53008 · doi:10.1088/0305-4470/12/1/016
[4] Cormack, W. J., and Hall, G. S. (1979b).International Journal of Theoretical Physics,18, 279. · Zbl 0426.53020 · doi:10.1007/BF00671764
[5] Hall, G. S. (1976).Journal of Physics A,9, 541. · Zbl 0326.15009 · doi:10.1088/0305-4470/9/4/010
[6] Hall, G. S. (1979). ?The Classification of Second Order Symmetric Tensors in General Relativity Theory,? Preprint. Lectures given at the Stefan Banach International Mathematical Centre, Warsaw. Autumn 1979.
[7] Ludwig, G., and Scanlon, G. (1971).Communications in Mathematical Physics,20, 291. · Zbl 0207.20702 · doi:10.1007/BF01646625
[8] Penrose, R. (1960).Annals of Physics,10, 171. · Zbl 0091.21404 · doi:10.1016/0003-4916(60)90021-X
[9] Penrose, R. (1972). InGravitation: Problems, Prospects (Dedicated to the memory of A. Z. Petrov). Izdat ?Naukova Dumka?, Kiev, p. 203.
[10] Pirani, F. A. E. (1965). InLectures on General Relativity, Brandeis Summer Institute in Theoretical Physics, Vol. 1, Chap. 3. Prentice Hall, Englewood Cliffs, New Jersey.
[11] Pleba?ski, J. (1964).Acta Physica Polonica,26, 963.
[12] Semple, J. G., and Kneebone, G. T. (1952).Algebraic Projective Geometry. Oxford University Press, Oxford. · Zbl 0046.38103
[13] Shaw, R. (1971). Preprint. University of Hull, England.
[14] Sobczyk, G. (1980).Acta Physica Polonica B,11, 579.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.