Milman, David; Waksman, Zeev On topological properties of the central set of a bounded domain in \(R^ m\). (English) Zbl 0454.57004 J. Geom. 15, 1-7 (1981). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 6 Documents MSC: 57N15 Topology of the Euclidean \(n\)-space, \(n\)-manifolds (\(4 \leq n \leq \infty\)) (MSC2010) 57N99 Topological manifolds 52A99 General convexity 53A07 Higher-dimensional and -codimensional surfaces in Euclidean and related \(n\)-spaces Keywords:centers of maximal balls inside a region of m-space; maximal principal curvature of the boundary PDF BibTeX XML Cite \textit{D. Milman} and \textit{Z. Waksman}, J. Geom. 15, 1--7 (1981; Zbl 0454.57004) Full Text: DOI References: [1] D. Milman, Eine geometrische Ungleichung und ihre Anwendung (Die zentrale Menge des Gebietes und die Erkennung des Gebietes durch sie), in ”General Inequalities”, v. 2, edited by E.F. Beckenbach (to appear). [2] R.O. Duda, P.E. Hart, Pattern Classification and Scene Analysis, Chap. 9, Wiley, 1973. · Zbl 0277.68056 [3] A.G. Vainstein, V.A. Efremovic, E.A. Loginov ”On the skeleton of a Riemann manifold with an edge” Uspechi Matem Nauk, v. XXXIII, 3 (201), 1978, pp. 155–156. (in Russian). [4] J. Milnor, Morse Theory, Princeton, New Jersey, 1963. This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.