×

zbMATH — the first resource for mathematics

Existence of weak solutions for stochastic differential equations with driving semimartingales. (English) Zbl 0454.60057

MSC:
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Billingsley P., Convergence of Probability Measures (1968) · Zbl 0172.21201
[2] Dellacherie C., Probability et Potentiel
[3] Grigelionis B., On weak convergence of semimartingales and point processes. To appear in- Lit (1981) · Zbl 0487.60041
[4] Jacod J., Calcul Stochastique et Problemes de Martingales 714 (1979) · Zbl 0414.60053
[5] Jacod J., Stochastics 3 (1979)
[6] Jacod J., Stochastics 4 (1980) · Zbl 0436.60044
[7] Jacod J., Sem. Proba. Rennes 79 pp 1– (1980)
[8] Lebedev V. A., Int. Symp. on Stoch. Diff. Equations
[9] Meyer P. A., Sem. Proba pp 245– (1976)
[10] Meyer P. A., Sem. Proba pp 411– (1978)
[11] Pellaumail J., Weak solutions for semimartingales. To appear (1980) · Zbl 0427.60063
[12] Schal M., Z. Wahr 32 pp 179– (1975) · Zbl 0316.90080
[13] Skorokhod A. V., Theo. Proba. and Appl 1 pp 261– (1956)
[14] Stroock D. W., Multidimensional Diffusion Processes 233 (1979) · Zbl 0426.60069
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.