×

zbMATH — the first resource for mathematics

A modified reduced gradient method for a class of nondifferentiable problems. (English) Zbl 0454.90058

MSC:
90C25 Convex programming
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] P.A. Beck and J.G. Ecker, ”A modified concave simplex algorithm for geometric programming”,Journal of Optimization Theory and Applications 15 (1975) 189–202. · Zbl 0288.90066 · doi:10.1007/BF02665292
[2] R.J. Duffin, E.J. Peterson and C. Zener,Geometric programming: Theory and applications (John Wiley and Sons, New York, 1967). · Zbl 0171.17601
[3] J.G. Ecker and W. Gochet, ”A reduced gradient method for quadratic programs with quadratic constraints andl p -constrainedl p -approximation problems”, Research Paper 7610, Departement Toegepaste Ekonomische Wetenschappen, Katholieke Universiteit Leuven (Leuven, 1976).
[4] J.G. Ecker, W. Gochet and Y. Smeers, ”Modified reduced gradient method for dual posynomial programming”,Journal of Optimization Theory and its Applications 26(2) (1978) 265–275. · Zbl 0369.90118 · doi:10.1007/BF00933407
[5] W. Gochet and Y. Smeers, ”A modified reduced gradient method for a class of nondifferentiable problems”, Research Report, Departement Toegepaste Ekonomische Wetenschappen, Katholieke Universiteit Leuven (Leuven, 1978). · Zbl 0369.90118
[6] P. Huard, ”Convergence de la méthode du gradient réduit”, in: O. Mangasarian, R. Meyer and S. Robinson, eds.,Nonlinear programming 2 (Academic Press, New York, 1975) pp. 29–54.
[7] C. Lemaréchal, ”An extension of Davidon methods to non differentiable problems”, in: R. Balinsky and P. Wolfe, eds.,Nondifferentiable optimization (Mathematical programming study 3) (North-Holland, Amsterdam, 1975) pp. 95–109.
[8] P.G. Luenberger,Introduction to linear and nonlinear programming (Addison–Wesley, Reading, MA, 1973). · Zbl 0297.90044
[9] H. Mokhtar-Kharroubi, ”Sur quelques méthodes de gradient réduit sous contraintes linéaires”,Bulletin Electricité de France, Série C 1(1978) 53–66.
[10] E. Peterson and J.G. Ecker, ”Geometric programming: Duality in quadratic programming andl p -approximationI”, in: H.W. Kuhn and A. Tucker, eds.,Proceedings of the Princeton symposium on mathematical programming (Princeton University Press, Princeton, NJ, 1970). · Zbl 0169.22102
[11] E. Peterson and J.G. Ecker, ”Geometric programming: Duality in quadratic programming andl p -approximation II: Canonical programs”,SIAM Journal on Applied Mathematics 17 (1969) 317–340. · Zbl 0172.43704 · doi:10.1137/0117031
[12] E. Peterson and J.G. Ecker, ”Geometric programming: Duality in quadratic programming andl p -approximation III: Degenerate programs”,Journal of Mathematical Analysis and Applications 29 (1970) 365–383. · Zbl 0183.49003 · doi:10.1016/0022-247X(70)90085-5
[13] T. Rockafellar,Convex analysis (Princeton University Press, Princeton, NJ, 1970). · Zbl 0193.18401
[14] T. Rockafellar, ”Some convex programs whose duals are linearly constrained”, in: J.B. Rosen, O. Mangasarian and K. Ritter, eds.,Nonlinear programming (Academic Press, New York, 1970). · Zbl 0252.90046
[15] P. Wolfe, ”Methods of nonlinear programming”, in: R. Graves and P. Wolfe, eds.,Recent advances in mathematical programming (McGraw-Hill, New York, 1963) pp. 67–86. · Zbl 0225.90042
[16] P. Wolfe, ”A method of conjugate subgradients for minimizing nondifferentiable functions”, in: R. Balinsky and P. Wolfe, eds.,Nondifferentiable optimization (Mathematical programming study 3) (North-Holland, Amsterdam, 1975) pp. 95–101. · Zbl 0369.90093
[17] W. Zangwill, ”The convex simplex method”,Management Science 14 (1967) 221–238. · Zbl 0153.49002 · doi:10.1287/mnsc.14.3.221
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.