×

zbMATH — the first resource for mathematics

Bounds on discrete dynamic programming recursions. I: Models with non- negative matrices. (English) Zbl 0454.90085

MSC:
90C39 Dynamic programming
PDF BibTeX XML Cite
Full Text: EuDML
References:
[1] R. Bellman: On a Quasi-Linear Equation. Canad. J. Math. 8 (1956), 198-202. · Zbl 0071.34902 · doi:10.4153/CJM-1956-023-8
[2] R. Bellman: A Markovian Decision Process. J. Math. Mecb. 6 (1957), 670-684. · Zbl 0078.34101
[3] R. Bellman: Introduction to Matrix Analysis. McGraw Hill, New York 1960. Second edition 1970. · Zbl 0124.01001
[4] B. W. Brown: On the Iterative Method of Dynamic Programming in a Finite Space Discrete Time Markov Processes. Ann. Math. Stat. 36 (1965), 4, 1279-1285. · Zbl 0136.14107 · doi:10.1214/aoms/1177699999
[5] F. R. Gantmakher: Teoriya matric. Second edition. Nauka, Moscow 1966.
[6] R. A. Howard: Dynamic Programming and Markov Processes. Technology Press and Wiley Press, New York 1960. · Zbl 0091.16001
[7] R. A. Howard J. E. Matheson: Risk-sensitive Markov Decision Prccesses. Manag. Sci. 18 (1972), 7, 357-369. · Zbl 0238.90007 · doi:10.1287/mnsc.18.7.356
[8] E. Lanery: Étude asymptotique des systèmes Markoviens à commande. Rev. Franc. Inf. Rech. Oper. 3 (1967), 1, 3-56. · Zbl 0159.48804 · eudml:193090
[9] P. Mandl E. Seneta: The Theory of Non-Negative Matrices in a Dynamic Programming Problem. Austral. J. Stat. 11 (1969), 2, 85-96. · Zbl 0185.08003 · doi:10.1111/j.1467-842X.1969.tb00302.x
[10] P. Mandl: Decomposable Non-Negative Matrices in a Dynamic Programming Problem. Czech. Math. J. 20 (1970), 3, 504-510. · Zbl 0209.22902 · eudml:12547
[11] A. M. Ostrowski: Solution of Equations and System of Equations. Academic Press, New York 1960. · Zbl 0115.11201
[12] U. G. Rothblum: Algebraic Eigenspaces of Nonnegative Matrices. Linear Algebra Applic. 72 (1975), 281-292. · Zbl 0321.15010 · doi:10.1016/0024-3795(75)90050-6
[13] U. G. Rothblum: Multiplicative Markov Decision Chains. PhD Dissertation, Dept. Oper. Res., Stanford Calif. 1974.
[14] U. G. Rothblum: Normalized Markov Decision Chains II - Optimality of Nonstationary Policies. SIAM J. Control. Optim. 15 (1977), 2, 221-232. · Zbl 0367.90118 · doi:10.1137/0315016
[15] P. J. Schweitzer A. Federgruen: The Asymptotic Behavior of Undiscounted Value Iteration in Markov Decision Problems. Mathem. Oper. Res. 2 (1977), 4, 360-381. · Zbl 0402.90098 · doi:10.1287/moor.2.4.360
[16] K. Sladký: On Dynamic Programming Recursion for Multiplicative Markov Decision Chains. Math. Progr. Study 6 (1976), 216-226.
[17] K. Sladký: Successive Approximation Methods for Dynamic Programming Models. Proceedings of the Third Formator Symposium on the Analysis of Largs-Scale Systems. (L. Bakule, J. Beneš Academia, Prague 1979.
[18] K. Sladký: Bounds on Discrete Dynamic Programming Recursions II - Polynomial Bounds on Problems with Block-Triangular Structure. Submitted to Kybernetika.
[19] K. Sladký: On Functional Equations of Discrete Dynamic Programming with Non-Negative Matrices. Research Report No. 900, Institute of Information Theory and Automation, Prague 1978.
[20] A. F. Veinott, Jr.: Discrete Dynamic Programming with Sensitive Discount Optimality Criteria. Ann. Math. Stat. 40 (1969), 5,1635-1660. · Zbl 0183.49102 · doi:10.1214/aoms/1177697379
[21] W. H. M. Zijms: On Nonnegative Matrices in Dynamic Programming I. Memorandum Cosor 79-10, Eindhoven University of Technology, Eindhoven 1979.
[22] W. H. M. Zijms: Maximizing the Growth of the Utility Vector in a Dynamic Programming Model. Memorandum Cosor 79-11, Eindhoven University of Technology, Eindhoven 1979.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.