×

Les fibres de rang deux sur \(P_ 2\) et leurs sections. (French) Zbl 0455.14007


MSC:

14F05 Sheaves, derived categories of sheaves, etc. (MSC2010)
14C20 Divisors, linear systems, invertible sheaves
14F25 Classical real and complex (co)homology in algebraic geometry
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML

References:

[1] BARTH (W.) . - Moduli of vector bundles on the projective plane , Invent. Math., vol. 42, 1977 , p. 63-91. MR 57 #324 | Zbl 0386.14005 · Zbl 0386.14005
[2] GRAUERT (H.) und MULICH (G.) . - Vektorbündel Vom Rang 2 über dem n-dimensionalen komplex-projectiver Raum , Manu scripta Math., vol. 16, 1975 , p. 75-100. MR 52 #3163 | Zbl 0318.32027 · Zbl 0318.32027
[3] GRIFFITHS (P.) and HARRIS (J.) . - Residues and zero-cycles on algebraic varieties , Ann. math., vol. 108, 1978 , p. 461-505. MR 80d:14006 | Zbl 0423.14001 · Zbl 0423.14001
[4] HARTSHORNE (R.) . - Algebraic Geometry , Springer Verlag, 1977 . MR 57 #3116 | Zbl 0367.14001 · Zbl 0367.14001
[5] HARTSHORNE (R.) . - Stable Vector bundles of rank 2 on P3 , Math. Ann., vol. 238, 1978 , p. 229-280. MR 80c:14011 | Zbl 0411.14002 · Zbl 0411.14002
[6] MARUYAMA (M.) . - Moduli of stable sheaves II , J. Math. Kyoto Univ., vol. 18, 1978 , p. 557-614. Article | MR 82h:14011 | Zbl 0395.14006 · Zbl 0395.14006
[7] ODA (T.) . - Vector bundles on abelian surfaces , Invent. Math., vol. 13, 1971 , p. 247-260. MR 47 #6701 | Zbl 0216.05903 · Zbl 0216.05903
[8] SCHWARZENBERGER (R.) . - Vector bundles on algebraic surfaces , Proc. London Math. Soc., vol. 11, 1961 , p. 601-622. MR 25 #1160 | Zbl 0212.26003 · Zbl 0212.26003
[9] TAKEMOTO (F.) . - Stable vector bundles on algebraic surfaces , Nagoya Math. J., vol. 47, 1972 , p. 29-48. Article | MR 49 #2735 | Zbl 0245.14007 · Zbl 0245.14007
[10] ELENOWAJG (G.) and FORSTER (O.) . - Bounding cohomology groups of vector bundles on Pn , Math. Ann., vol. 246, 1980 , p. 251-270. Zbl 0432.14011 · Zbl 0432.14011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.