Agronsky, S. J.; Biskner, R.; Bruckner, A. M.; Marik, J. Representations of functions by derivatives. (English) Zbl 0455.26002 Trans. Am. Math. Soc. 263, 493-500 (1981). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 2 ReviewsCited in 7 Documents MSC: 26A24 Differentiation (real functions of one variable): general theory, generalized derivatives, mean value theorems 26A21 Classification of real functions; Baire classification of sets and functions 26A27 Nondifferentiability (nondifferentiable functions, points of nondifferentiability), discontinuous derivatives Keywords:derivatives; approximate derivatives; approximately continuous functions; functions of Baire class 1; Darboux property; Zahorski’s class M3 × Cite Format Result Cite Review PDF Full Text: DOI References: [1] S. Agronsky, Characterizations of certain subclasses of the Baire class \( 1\), Doctoral Dissertation, Univ. of California, Santa Barbara, 1974. [2] A. M. Bruckner, Inflexible derivatives, Quart. J. Math. Oxford Ser. (2) 29 (1978), no. 113, 1 – 10. · Zbl 0398.26006 · doi:10.1093/qmath/29.1.1 [3] A. M. Bruckner and J. G. Ceder, Darboux continuity, Jber. Deutsch. Math.-Verein. 67 (1964/1965), no. Abt. 1, 93 – 117. · Zbl 0144.30003 [4] Richard J. Fleissner, Multiplication and the fundamental theorem of calculus — a survey, Real Anal. Exchange 2 (1976/77), no. 1, 7 – 34. [5] Casper Goffman and C. J. Neugebauer, On approximate derivatives, Proc. amer. Math. Soc. 11 (1960), 962 – 966. · Zbl 0097.26901 [6] Richard J. O’Malley, Baire* 1, Darboux functions, Proc. Amer. Math. Soc. 60 (1976), 187 – 192. · Zbl 0339.26010 [7] R. J. O’Malley, Selective derivates, Acta Math. Acad. Sci. Hungar. 29 (1977), no. 1 – 2, 77 – 97. · Zbl 0345.26003 · doi:10.1007/BF01896470 [8] Richard J. O’Malley, Decomposition of approximate derivatives, Proc.#Amer. Math. Soc. 69 (1978), no. 2, 243 – 247. · Zbl 0393.26003 [9] G. Petruska and M. Laczkovich, Baire 1 functions, approximately continuous functions and derivatives, Acta Math. Acad. Sci. Hungar. 25 (1974), 189 – 212. · Zbl 0279.26003 · doi:10.1007/BF01901760 [10] David Preiss, Level sets of derivatives, Trans. Amer. Math. Soc. 272 (1982), no. 1, 161 – 184. · Zbl 0508.26001 [11] Clifford E. Weil, On properties of derivatives, Trans. Amer. Math. Soc. 114 (1965), 363 – 376. · Zbl 0163.29604 [12] Clifford E. Weil, A property for certain derivatives, Indiana Univ. Math. J. 23 (1973/74), 527 – 536. · Zbl 0273.26003 · doi:10.1512/iumj.1973.23.23044 [13] Z. Zahorski, Sur la première dérivée, Trans. Amer. Math. Soc. 69 (1950), 1 – 54 (French). · Zbl 0038.20602 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.