Hiriart-Urruty, J.-B. Extension of Lipschitz functions. (English) Zbl 0455.26006 J. Math. Anal. Appl. 77, 539-554 (1980). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 25 Documents MSC: 26B35 Special properties of functions of several variables, Hölder conditions, etc. 49J35 Existence of solutions for minimax problems 58B10 Differentiability questions for infinite-dimensional manifolds 49M25 Discrete approximations in optimal control Keywords:Lipschitz functions; generalized gradient; infimal convolution PDF BibTeX XML Cite \textit{J. B. Hiriart-Urruty}, J. Math. Anal. Appl. 77, 539--554 (1980; Zbl 0455.26006) Full Text: DOI OpenURL References: [1] Clarke, F.H, A new approach to Lagrange multipliers, Math. operations res., 1, 2, 165-174, (1976) · Zbl 0404.90100 [2] Hiriart-Urruty, J.-B, Contributions à la programmation mathématique: cas déterministe et stochastique, () [3] Hiriart-Urruty, J.-B, Tangent cones, generalized gradients and mathematical programming in Banach spaces, Math. operations res., 4, No. 1, 79-97, (1979) · Zbl 0409.90086 [4] Hiriart-Urruty, J.-B, New concepts in nondifferentiable programming, (), 57-85 · Zbl 0469.90071 [5] Laurent, P.-J, Approximation et optimisation, (1972), Hermann Paris · Zbl 0238.90058 [6] McShane, E.J, Extension of range of functions, Bull. amer. math. soc., 40, 837-842, (1934) · Zbl 0010.34606 [7] Martin, R.H, Nonlinear operators and differential equations in Banach spaces, (1976), Wiley New York [8] Moreau, J.-J, Fonctionnelles convexes, () · Zbl 0118.10502 [9] Rockafellar, R.T, Convex analysis, (1970), Princeton Univ. Press · Zbl 0202.14303 [10] Rockafellar, R.T, Directionally Lipschitzian functions and subdifferential calculus, (), 33-355, (3) · Zbl 0413.49015 [11] Thibault, L, Propriétés des sous-différentiels de fonctions localement lipschitziennes Définies sur un espace de Banach Séparable, () · Zbl 0343.46030 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.