zbMATH — the first resource for mathematics

Interval exchange transformations. (English) Zbl 0455.28006

28D05 Measure-preserving transformations
54H20 Topological dynamics (MSC2010)
Full Text: DOI
[1] N. Bourbaki,Algèbre, Ch. IX, Paris, Hermann, 1959.
[2] N. A. Friedman,Introduction to Ergodic Theory, New York, Van Nostrand-Rheinhold, 1970.
[3] H. Furstenberg,Stationary Processes and Prediction theory, Annals of Math. Studies, Princeton, 1960. · Zbl 0178.53002
[4] A. Hajian and S. Kakutani,Weakly wandering sets and invariant measures, Trans. Amer. Math. Soc.110 (1964), 136–151. · Zbl 0122.29804
[5] P. R. Halmos,Lectures on Ergodic Theory, Math. Soc. of Japan, 1956. · Zbl 0070.24506
[6] G. H. Hardy and E. M. Wright,An Introduction to the Theory of Numbers, Oxford, Clarendon Press, 1938. · Zbl 0020.29201
[7] S. Kakutani,Induced measure preserving transformations, Proc. Imp. Acad. Tokyo19 (1943), 635–641. · Zbl 0060.27406
[8] M. Keane,Interval exchange transformations, Math. Z.141 (1975), 25–31. · Zbl 0288.28020
[9] M. Keane,Non-ergodic interval exchange transformations, Israel J. Math.26 (1977), 188–196. · Zbl 0351.28012
[10] C. Boldrighini, M. Keane and F. Marchetti,Billiards in polygons, preprint, 1977. · Zbl 0377.28014
[11] H. Keynes and D. Newton,A minimal non-uniquely ergodic interval exchange transformation, Math. Z.148 (1976), 101–105. · Zbl 0308.28014
[12] V. A. Rohlin,Exact endomorphisms of a Lebesgue space, Amer. Math. Soc. Transl. (2)49 (1966), 171–240.
[13] Ya. G. Sinai,Introduction to Ergodic Theory, Princeton Lecture Notes Series, Princeton University Press, 1977.
[14] W. A. Veech,A Second Course in Complex Analysis, New York, Benjamin, 1967. · Zbl 0145.29901
[15] W. A. Veech,Topological dynamics, to appear in Bull. Amer. Math. Soc.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.