×

Differential-geometric structures on manifolds. (English. Russian original) Zbl 0455.58002

J. Sov. Math. 14, 1573-1719 (1980); translation from Itogi Nauki Tekh., Ser. Probl. Geom. 9, 248 p. (1979).

MSC:

58A20 Jets in global analysis
58A15 Exterior differential systems (Cartan theory)
53C15 General geometric structures on manifolds (almost complex, almost product structures, etc.)
58B20 Riemannian, Finsler and other geometric structures on infinite-dimensional manifolds
55R10 Fiber bundles in algebraic topology
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] É. D. Alshibaya, ?On the geometry of distributions of hyperplane elements in affine space,? in: Tr. Geometr. Sem., Vol. 5 (VINITI), Moscow (1974), pp. 169?193.
[2] V. T. Bazylev, ?On multidimensional nets and their transformations,? in: Geometriya. 1963 (Moscow) (1965), pp. 138?164.
[3] V. T. Bazylev, ?On nets on multidimensional surfaces of projective space,? Izv. Vyssh. Uchebn. Zaved., Mat., No. 2, 9?19 (1966). · Zbl 0147.21004
[4] V. T. Bazylev, ?On a property of geodesic lines of multidimensional surfaces,? Uch. Zap. Mosk. Gos. Pedagog. Inst. im. V. I. Lenina,1, No. 374, 52?60 (1970).
[5] V. T. Bazylev, ?On ?-conjugate nets in a space of affine connection,? Izv. Vyssh. Uchebn. Zaved., Mat.,5, 25?30 (1974).
[6] V. T. Bazylev, ?Nets on manifolds,? in: Tr. Geometr. Sem., Vol.6 (VINITI), Moscow (1974), pp. 189?205.
[7] T. N. Balazyuk, ?Connections in ?(g)-subbundles,? Fifth Pribaltic Geometry Conference. Texts of Reports, Druskininkai (1978).
[8] T. N. Balazyuk, The Differential Geometry of m-Dimensional Line Elements Equipped with a Cone. I, VINITI AN SSSR, Moscow (1978).
[9] T. N. Balazyuk, The Differential Geometry of m-Dimensional Line Elements Equipped with a Cone. II, VINITI AN SSSR, Moscow (1978).
[10] T. N. Balazyuk, The Differential Geometry of m-Dimensional Line Elements Equipped with a Cone. III, VINITI AN SSSR, Moscow (1978).
[11] T. N. Balazyuk, ?On some differential-geometric structures associated with a rigged distribution of line elements of projective space,? in: Differents. Geometriya Mnogoobrazii Figur., Kaliningrad, No. 9, 20?25 (1978).
[12] D. V. Beklemishev, ?Differential geometry of spaces with an almost complex structure,? in: Geometriya. 1963 (Itogi Nauki. VINITI AN SSSR), Moscow (1965), pp. 165?212.
[13] R. L. Bishop and R. J. Crittenden, Geometry of Manifolds, Academic Press (1964). · Zbl 0132.16003
[14] V. I. Bliznikas, ?Finsler spaces and their generations,? in: Algebra. Topologiya. Geometriya. 1967 (Itogi Nauki. VINITI AN SSSR), Moscow (1969), pp. 73?125.
[15] V. I. Bliznikas, ?On a nonholonomic surface of a three-dimensional space of projective connection,? in: Tr. Geometr. Sem., Vol.3 (VINITI AN SSSR), Moscow (1971), pp. 115?124. · Zbl 1396.53028
[16] V. I. Bliznikas and Z. Yu. Lupeikis, ?The geometry of differential equations,? in: Algebra. Topologiya. Geometriya. Vol. 11 (Itogi Nauki i Tekhn. VINITI AN SSSR), Moscow (1974), pp. 209?259.
[17] V. V. Vagner, ?The theory of differential objects and the foundations of differential geometry,? in: O. Foundations of Differential Geometry, O. Veblen and J. Whitehead, Cambridge University Press (1932).
[18] V. V. Vagner, ?The algebraic theory of tangent spaces of higher orders,? in: Tr. Sem. Vecktorn. Tenzorn. Analizu, No. 10 (1956), pp. 31?88. · Zbl 0073.16701
[19] A. M. Vasil’ev, ?Differential algebras and differential-geometric structures,? in: Tr. Geometr. Sem., Vol. 4 (VINITI AN SSSR), Moscow (1973), pp. 217?230.
[20] A. M. Vasil’ev, ?Differential algebra. Contravariant analytic methods in differential geometry,? in: Probl. Geometrii. Vol. 10 (Itogi Nauki i Tekhn. VINITI AN SSSR), Moscow (1978), pp. 5?24.
[21] M. V. Vasil’eva, ?On connections between various Finsler geometries in the bundle of Finsler geometries,? Uch. Zap. Mosk. Gos. Pedagog. Inst. im. V. I. Lenina,271, 49?54 (1967).
[22] K. Godbillon, Differential Geometry and Analytic Mechanics, Mir, Moscow (1973).
[23] R. F. Dombrovskii, ?Invariant rigging fields of objects on Mmz,? in: Sixth All-Union Geometry Conference on Modern Problems of Geometry, Vil’nyus (1975), pp. 81?85.
[24] R. F. Dombrovskii, ?On the geometry of tangently rigged surfaces in Pn,? in: Tr. Geometr. Sem., Vol. 6 (VINITI AN SSSR), Moscow (1974), pp. 171?188.
[25] R. F. Dombrovskii, ?Fields of geometric objects on multidimensional tangently rigged surfaces in Pn,? in: Probl. Geometrii. Vol. 7 (Itogi Nauki i Tekhn., VINITI AN SSSR), Moscow (1975), pp. 153?171.
[26] R. F. Dombrovskii, ?Invariant almost product structures on a tangently r-rigged surface Mmr,? VINITI AN SSSR, Moscow (1974).
[27] R. F. Dombrovskii, ?Tangently rigged (m?1)-dimensional surfaces of second order on Mmr,? VINITI AN SSSR, Moscow (1975).
[28] R. F. Dombrovskii, ?On nonholonomic compositions on surfaces Mmr in Pn.? All-Union Conference on Non-Euclidean Geometry. 150 Years of Lobachevskii Geometry, Kazan’, Texts of Reports, Moscow (1976), p. 69.
[29] L. E. Evtushik, ?The Lie product and differential equations of the field of a geometric object,? Dokl. Akad. Nauk SSSR,132, No. 5, 998?1001 (1960).
[30] L. E. Evtushik, ?On a construction of invariant forms and the structural equations of infinite groups,? Dokl. Akad. Nauk SSSR,146, No. 1, 20?21 (1962). · Zbl 0131.26601
[31] L. E. Evtushik, ?Differential connections and infinitesimal transformations of extended pseudogroups,? in: Tr. Geometr. Sem., Vol. 2 (VINITI AN SSSR), Moscow (1969), pp. 119?150. · Zbl 0281.58003
[32] L. E. Evtushik, ?Nonlinear connections of higher orders,? Izv. Vyssh. Uchebn. Zaved., Mat., No. 2, 32?44 (1969).
[33] L. E. Evtushik, ?Nonlinear connections in metric spaces of higher orders,? Izv. Vyssh. Uchebn. Zaved., Mat., No. 1, 48?60 (1970).
[34] L. E. Evtushik, ?Nonlinear mp-connections in principal bundles,? Mat. Zametki,11, No. 2, 341?351 (1972). · Zbl 0232.53031
[35] L. E. Evtushik, ?Nonlinear (n?1)p-connections in Cartan metric spaces of higher orders,? Mat. Zametiki,11, No. 4, 447?458 (1972). · Zbl 0232.53031
[36] L. E. Evtushik, ?On the holonomy of nonlinear connections and connections in pseudogroup and homogeneous bundles,? Sib. Mat. Zh.,14, No. 3, 536?548 (1973).
[37] L. E. Evtushik and V. B. Tret’yakov, ?On structures defined by a system of ordinary differential equations of higher order,? in: Tr. Geometr. Sem., Vol. 6 (VINITI AN SSSR), Moscow (1974), pp. 243?255.
[38] D. N. Zeiliger, Complex Ruled Geometry, Gostekhizdat, Leningrad-Moscow (1934).
[39] R. Zulanke and P. Wintgen, Differential Geometry and Bundles, Mir, Moscow (1975).
[40] I. L. Kantor, ?Transitive differential groups and invariant connections on homogeneous spaces,? in: Tr. Sem. Vektorn. Tenzorn. Analizu, Mosk. Univ., No. 13, 310?398 (1966).
[41] E. Cartan, Spaces of Affine, Projective and Conformal Connections, Kazansk. Univ., Kazan’ (1962).
[42] V. F. Kirichenko, ?Some types of k-spaces,? Usp. Mat. Nauk,30, No. 3, 163?164 (1975).
[43] V. F. Kirichenko, ?Some properties of tensors on k-spaces,? Vestn. Mosk. Univ., No. 6, 78?85 (1975).
[44] V. F. Kirichenko, ?k-Spaces of constant holomorphic sectional curvature,? Mat. Zametki,19, No. 5, 805?814 (1976).
[45] A. L. Krishunaite (A. Bashkene), ?Almost contact structures and their analogues,? Text of Reports. Third Interschool Scientific Conference on Problems of Geometry, Kazan’ (1968).
[46] A. L. Krishunaite, ?Almost contact structures on hypersurfaces of four-dimensional centrobiaffine space of elliptic and hyperbolic type,? Litov. Mat. Sb.,7, No. 3, 423?438 (1968).
[47] M. K. Kuz’min, ?Nets defined by distributions in Euclidean space En and their generalizations,? in: Probl. Geometrii., Vol. 7 (Itogi Nauki i Tekhn. VINITI AN SSSR), Moscow (1975), pp. 215?229.
[48] M. K. Kuz’min, ?On canonical nets of distributions of surfaces of Euclidean space,? in: Probl. Geometrii, Vol. 7 (Itogi Nauki i Tekhn. VINITI AN SSSR), Moscow (1975), pp. 231?248.
[49] B. L. Laptev, ?The Lie product in the space of support elements,? in: Tr. Sem. Vektorn. Tenzorn. Analizu,10, 227?248 (1956). · Zbl 0074.16603
[50] G. F. Laptev, ?Differential connections of manifolds and their holonomy groups,? Dokl. Akad. Nauk SSSR,71, No. 4, 597?600 (1950).
[51] G. F. Laptev, ?On manifolds of geometric elements with a differential connection,? Dokl. Akad. Nauk SSSR,73, No. 1, 17?20 (1950).
[52] G. F. Laptev, ?On the fundamental group connection of the manifold of homogeneous spaces,? Usp. Mat. Nauk,6, No. 1, 164?165 (1951).
[53] G. F. Laptev, ?On a new invariant analytic method of differential-geometric investigations,? in: 125 Years of the Non-Euclidean Geometry of Lobachevskii, Moscow-Leningrad (1951), pp. 175?178.
[54] G. F. Laptev, ?The differential geometry of immersed manifolds. Group-theoretic methods of differential-geometric investigations,? in: Tr. Mosk. Mat. Obshch.,2, 275?382 (1953).
[55] G. F. Laptev, ?The group-theoretic method of differential-geometric investigations,? Tr. 3rd Vses. Mat. S?ezda. 1956, Vol. 3, Moscow, AN SSSR (1958), pp. 409?418.
[56] G. F. Laptev, ?Manifolds immersed in generalized spaces,? Tr. 4th Vses. Mat. S?ezda. 1961, Vol. 2, Nauka, Leningrad, pp. 226?233.
[57] G. F. Laptev, ?Differential prolongations of smooth manifolds and projective structures of higher orders,? Mezhdunar. Kongr. Matematikov, Moscow, 1966, Text of Reports, Sec. 9, pp. 33?34.
[58] G. F. Laptev, ?Basic infinitesimal structures of higher orders on a smooth manifold,? in: Tr. Geometr. Seminara., Vol. 1 (VINITI AN SSSR), Moscow (1966), pp. 139?190.
[59] G. F. Laptev, ?Structural equations of a principal fiber manifold,? in: Tr. Geometr. Sem., Vol. 2 (VINITI AN SSSR), Moscow (1969), pp. 161?178.
[60] G. F. Laptev, ?An invariant analytic theory of differentiable mappings,? Tr. Mezhdunar. Kongr. Matematikov. Nice (1970), pp. 84?85.
[61] G. F. Laptev, ?Distributions of tangent elements,? in: Tr. Geometr. Sem., Vol. 3 (VINITI AN SSSR), Moscow (1971), pp. 29?48. · Zbl 1396.53030
[62] G. F. Laptev, ?On the invariant analytic theory of differentiable mappings,? in: Tr. Geometr. Sem., Vol. 6 (VINITI AN SSSR), Moscow (1974), pp. 37?42.
[63] G. F. Laptev and N. M. Ostianu, ?Distributions of m-dimensional linear elements in a space of projective connection. I,? in: Tr. Geometr. Sem., Vol. 3 (VINITI AN SSSR), Moscow (1971), pp. 49?94. · Zbl 1396.53031
[64] G. F. Laptev and N. M. Ostianu, ?On pairs of distributions in manifolds of almost complex structure,? Text of Reports. Fifth All-Union Conference on Modern Problems of Geometry, Samarkand (1972), p. 113.
[65] G. F. Laptev and N. M. Ostianu, ?The (f,?, ?,?)-structure on differentiable manifolds,? in: Probl. Geometrii., Vol. 7 (Itogi Nauki i Tekhn. VINITI AN SSSR), Moscow (1975), pp. 5?22. · Zbl 0548.53038
[66] A. Lichnerowicz, The Global Theory of Connections and Holonomy Groups, IL, Moscow (1960).
[67] Yu. G. Lumiste, ?On the foundations of the global theory of connections,? Uch. Zap. Tartus. Univ.,150, 69?108 (1964).
[68] Yu. G. Lumiste, ?Connections in homogeneous bundles,? Mat. Sb.,69, No. 3, 434?469 (1966). · Zbl 0206.50601
[69] Yu. G. Lumiste, ?Homogeneous bundles with connection and their immersions,? in: Tr. Geometr. Sem., Vol. 1 (VINITI AN SSSR), Moscow (1966), pp. 191?237.
[70] Yu. G. Lumiste, ?The theory of connections in fiber spaces,? in: Algebra. Topologiya. Geometriya. 1969 (Itogi Nauki i Tekhn. VINITI AN SSSR), Moscow (1971), pp. 123?168.
[71] Yu. G. Lumiste, ?Matrix representation of a semiholonomic differential group and the structural equations of the bundle of p-coframes,? in: Tr. Geometr. Sem., Vol. 5 (VINITI AN SSSR), Moscow (1974), pp. 239?257.
[72] Yu. G. Lumiste, ?Distributions on homogeneous spaces,? in: Probl. Geometrii., Vol. 8 (Itogi Nauki i Tekhn. VINITI AN SSSR), Moscow (1977), pp. 5?24.
[73] V. S. Malakhovskii, ?Differential geometry of manifolds of figures and pairs of figures in a homogeneous space,? in: Tr. Geometr. Sem., Vol. 2 (VINITI AN SSSR), Moscow (1969), pp. 179?206. · Zbl 0246.53019
[74] K. Nomizu, Lie Groups and Differential Geometry, IL, Moscow (1960). · Zbl 0071.15402
[75] A. P. Norden, ?Spaces of Cartesian composition,? Izv. Vyssh. Uchebn. Zaved., Mat., No. 4, 117?128 (1963).
[76] A. P. Norden, Spaces of Affine Connection, Nauka, Moscow (1976). · Zbl 0925.53007
[77] A P. Norden, ?Theory of compositions,? in: Probl. Geometrii., Vol. 10 (Itogi Nauki i Tekhn. VINITI AN SSSR), Moscow (1978), pp. 117?145.
[78] A. P. Norden and G. N. Timofeev, ?Invariant criteria of special compositions of multidimensional spaces,? Izv. Vyssh. Uchebn. Zaved., Mat., No. 8 (123), 81?89 (1972). · Zbl 0248.53030
[79] N. M. Ostianu, ?On certain projective-differential structures on a differentiable manifold,? in: Tr. Geometr. Sem., Vol. 2 (VINITI AN SSSR) (1969), pp. 207?246.
[80] N. M. Ostianu, ?On submanifolds in spaces with a (?, a)-structure,? Third Pribaltic Geom. Conf., Text of Reports. Palanga (1968), pp. 119?121.
[81] N. M. Ostianu, ?The distribution of m-dimensional linear elements in a space of projective connection. II,? in: Tr. Geometr. Sem., Vol. 3 (VINITI AN SSSR), Moscow (1971), pp. 95?114. · Zbl 1396.53032
[82] N. M. Ostianu, ?The distribution of hyperplane elements in projective space,? in: Tr. Geometr. Sem., Vol. 4 (VINITI AN SSSR), Moscow (1973), pp. 71?120. · Zbl 0308.53002
[83] N. M. Ostianu, ?Graded bundle spaces,? in: Tr. Geometr. Sem., Vol, 5 (VINITI AN SSSR), Moscow (1974), pp. 259?309. · Zbl 0305.53014
[84] N. M. Ostianu, ?Differential-geometric structures on differentiable manifolds,? in: Probl. Geometrii., Vol. 8 (Itogi Nauki i Tekhn. VINITI AN SSSR), Moscow (1977), pp. 89?111. · Zbl 0447.53028
[85] N. M. Ostianu, ?The distribution of pairs of elements in a rigged fiber space of Hp-structure,? in: Tr. Sem. Kafedry Geometrii Kazan. Univ., No. 8 (1975), pp. 82?84. · Zbl 1396.53053
[86] N. M. Ostianu and T. N. Balazyuk, ?Manifolds immersed in a space of projective structure,? in: Probl. Geometrii., Vol. 10 (Itogi Nauki i Tekhn. VINITI AN SSSR), Moscow (1978), pp. 75?116.
[87] N. M. Ostianu, V. V. Ryzhkov, and P. N. Shveikin, ?Outline of the scientific investigations of German Fedorovich Laptev,? Tr. Geometr. Sem. VINITI,4, 7?70 (1973).
[88] N. D. Polyakov, ?Affine connections on an almost contact manifold,? Texts of Reports, All-Union Geometry Conference ?150 Years of Lobachevskii Geometry,? Kazan’ (1976), p. 168.
[89] N. D. Polyakov, ?Structures induced by an almost complex structure,? Texts of Reports. Sixth All-Union Conference on Modern Problems of Geometry, Vil’nyus (1975), pp. 193?195.
[90] N. D. Polaykov, Geometry of Differentiable Manifolds of Almost Contact Structure. II, VINITI AN SSSR, Moscow (1976).
[91] N. D. Polyakov, Metric Connections on an Almost Contact Manifold, VINITI AN SSSR, Moscow (1976).
[92] N. D. Polyakov, ?Connections on an almost contact manifold,? in: Differentiable Geometry of Manifolds of Figures, No. 7, Kaliningrad (1976), pp. 73?78.
[93] N. D. Polyakov, ?Differential-geometric structures on an almost contact manifold,? in: Probl. Geometrii., Vol. 8 (Itogi Nauki i Tekhn. VINITI AN SSSR), Moscow (1977), pp. 113?137.
[94] Z. Kh. Popova, Structures Defined by a Nonlinear Connection in the Bundle of Frames, Mosk. Gos. Ped. Inst., Moscow (1973).
[95] P. K. Rashevskii, ?On the geometry of homogeneous spaces,? in: Tr. Sem. Vektorn. Tenzorn. Analizu, Mosk. Univ., No. 9, 49?74 (1952). · Zbl 0073.16202
[96] P. K. Rashevskii, Riemannian Geometry and Tensor Analysis, 3rd ed., Nauka, Moscow (1967).
[97] S. Sternberg, Lectures on Differential Geometry, Prentice-Hall (1964). · Zbl 0129.13102
[98] A. V. Stolyarov, ?The projective-differential geometry of a regular hyperstrip distribution of m-dimensional linear elements,? in: Probl. Geometrii., Vol. 7 (Itogi Nauki i Tekhn. VINITI AN SSSR), Moscow (1975), pp. 117?157.
[99] A. V. Stolyarov, ?Dual linear connections on rigged manifolds of a space of projective connection,? in: Probl. Geometrii., Vol. 8 (Itogi Nauki i Tekhn. VINITI AN SSSR), Moscow (1977), pp. 25?46.
[100] N. N. Surina, A Nonlinear Connection of Second Order in the Principal Bundle of Projective Frames, Smolensk Gos. Ped. Inst., Smolensk (1973).
[101] J. A. Schouten and D. J. Struik, Introduction to New Methods of Differential Geometry, ONTI, Moscow-Leningrad (1939).
[102] V. A. Tikhonov, ?Nets defined by hyperdistributions in affine space and their generalizations,? in: Probl. Geometrii., Vol. 8 (Itogi Nauki i Tekhn. VINITI AN SSSR), Moscow (1977), pp. 197?224. · Zbl 0437.53008
[103] V. B. Tret’yakov, L. E. Evtushik, and N. V. Stepanov, ?The reductive Cartan connection associated with a space of m-extensions over support elements of tangency of second order,? in: Tr. Sem. Kafedry Geometrii, No. VIII, Kazan. Univ. (1975), pp. 79?84.
[104] S. P. Finikov, Cartan’s Method of Exterior Forms, Gostekhizdat, Moscow (1948).
[105] Yu. I. Shinkunas, ?On the distribution of m-dimensional planes in an n-dimensional Riemannian space,? in: Tr. Geometr. Sem., Vol. 5 (VINITI), Moscow (1974), pp. 123?133.
[106] A. P. Shirokov, ?Structures on differentiable manifolds,? in: Algebra. Topologiya. Geometriya. 1967 (Itogi Nauki i Tekhn. VINITI AN SSSR), Moscow (1969), pp. 127?188.
[107] A. P. Shirokov, ?Structures on differentiable manifolds,? in: Algebra. Topologiya. Geometriya., Vol. II (Itogi Nauki i Tekhn. VINITI AN SSSR), Moscow (1974), pp. 153?207.
[108] A. P. Shirokov, ?A remark on structures in tangent bundles,? in: Tr. Geometr. Sem., Vol. 5 (VINITI), Moscow (1974), pp. 311?318.
[109] V. I. Shulikovskii, Classical Differential Geometry in Tensor Form, Fizmatgiz, Moscow (1963).
[110] V. I. Shulikovskii, ?Differential-topological characterization of a family of nets with equal Chebyshev vectors on a common apolar net,? in: Tr. Sem. Vektorn. Tenzorn. Analizu, Mosk. Univ., No. II (1961), pp. 141?151.
[111] L. P. Eisenhart, Continuous Groups of Transformations, IL, Moscow (1947).
[112] L. P. Eisenhart, Riemannian Geometry, rev. ed., Princeton University Press (1950).
[113] Tyuzi Adati and Teturo Miyazawa, ?On paracontact Riemannian manifolds,? TRU Math.,13, No. 2, 27?39 (1977). · Zbl 0382.53032
[114] W. Ambrose and I. M. Singer, ?A theorem on holonomy,? Trans. Am. Math. Soc.,75, 428?443 (1953). · Zbl 0052.18002
[115] C. P. Awasthi and V. C. Gupta, ?Integrability conditions of a F(k, k?2) structure satisfying Fk+Kk?2=0,? Demonstr. Math.,10, Nos. 3?4, 577?588 (1977).
[116] C. P. Awasthi and V. C. Gupta, ?Complete lift of F?-structure in tangent bundle,? Dokl. Bolg. Akad. Nauk,30, No. 3, 335?338 (1977). · Zbl 0357.53025
[117] D. E. Blair, ?The theory of quasi-Sasakian structures,? J. Different. Geom.,1, No. 4, 331?345 (1967). · Zbl 0163.43903
[118] D. E. Blair, ?Geometry of manifolds with structural group U(n){\(\times\)}O(s),? J. Different. Geom.,4, No. 2, 155?167 (1970). · Zbl 0202.20903
[119] D. E. Blair, ?Contact manifolds in Riemannian geometry,? Lect. Notes Math.,509, 146 (1976). · Zbl 0319.53026
[120] D. E. Blair, ?Two remarks on contact metric structures,? Tohoku Math. J.,29, No. 3, 319?324 (1977). · Zbl 0376.53021
[121] D. E. Blair, D. K. Showers, and K. Yano, ?Nearly Sasakian structures,? K?dai Math. Semin. Repts.,27, Nos. 1?2, 175?180 (1976). · Zbl 0328.53036
[122] J. Bouzon, ?Structures presque cocomplexes,? C. R. Acad. Sci.,255, No. 5, 822?824 (1962). · Zbl 0126.17804
[123] E. Cartan, ?Sur les variét?s á connexion affine et la théorie de la relativité généralisée,? Ann. Ecole Normale,40, 325?412 (1923),41, 1?25 (1924),42, 17?88 (1925).
[124] E. Cartan, ?Sur les espaces à connexion conforme,? Ann. Soc. Polon. Math.,2, 171?221 (1923). · JFM 50.0493.01
[125] E. Cartan, ?Sur les variétés à connexion projective,? Bull. Soc. Math. Fr.,54, 205?241 (1924). · JFM 50.0500.02
[126] E. Cartan, ?Les groupes d’holonomie des espaces généralisés,? Acta Math.,48, 1?42 (1926). · JFM 52.0723.01
[127] Bang-Yen Chen and Koichi Ogiue, ?Some characterizations of complex space forms,? Duke Math. J.,40, No. 4, 797?799 (1973). · Zbl 0274.53021
[128] Cheng-Hsien Chen, ?On a Sasakian manifold admitting special C-Killing vectors whose covariant derivatives are C-conformal Killing tensors,? TRU Math.,6, 7?11 (1970). · Zbl 0238.53030
[129] Luis A. Cordero, ?On P-normal almost-product structures,? Lect. Notes Math.,392, 1?9 (1974). · Zbl 0291.53018
[130] Luis A. Cordero, ?P-normal almost-product structure,? Tensor,28, No. 3, 229?238 (1974). · Zbl 0275.53023
[131] B. Eckman and A. Frölicher, ?Sur l’integrabilité des structures presque complexes,? C. R. Acad. Sci.,232, No. 25, 2284?2286 (1951).
[132] C. Ehresmann, ?Les connexions infinitésimales dans un espace fibré différentiable,? Colloque de Topologie, Bruxelles, 29?55 (1950).
[133] A. Frölicher and A. Nijenhuis, ?Theory of vector-valued differential forms. Part I. Derivations in the graded ring of differential forms,? Proc. Koninkl. Nederl. Akad. Wet.,A59, No. 3, 338?359 (1956).
[134] P. M. Gadea and Luis A. Cordero, ?On the automorphism group of?(4,2)-manifolds,? Tensor,29, No. 2, 161?165 (1975). · Zbl 0303.53038
[135] P. M. Gadea and Luis A. Cordero, ?On integrability conditions of a structure? satisfying? 4{\(\pm\)}? 2,? Tensor,28, No. 1, 78?82 (1974). · Zbl 0285.53032
[136] Gh. Gheorghiev, ?Sur les groupes de Lie associés aux prolongements reguliers d’une variété differentiable,? C. R. Acad. Sci.,265, No. 23, A779-A782 (1967).
[137] Samuel I. Goldberg and Kentaro Yano, ?Integrability of almost cosymplectic structures,? Pacif. J. Math.,31, No. 2, 373?382 (1969). · Zbl 0185.25104
[138] A. Gray, ?Minimal varieties and almost Hermitian submanifolds,? Mich. Math. J.,12, No. 3, 273?287 (1965). · Zbl 0132.16702
[139] A. Gray, ?Some examples of almost Hermitian manifolds,? Ill. J. Math.,10, No. 2, 353?366 (1966). · Zbl 0183.50803
[140] A. Gray, ?Nearly Kähler manifolds,? J. Different. Geom.,4, No. 3, 283?309 (1970). · Zbl 0201.54401
[141] A. Gray, ?Classification des variétes approximativement kahlériennes de courbure sectionelle holomorphe constante,? C. R. Acad. Sci.,279, No. 22, 797?800 (1974).
[142] A. Gray, ?Curvature identities for Hermitian and almost Hermitian manifolds,? Tôhoku Math. J.,28, No. 1, 601?612 (1976). · Zbl 0351.53040
[143] J. W. Gray, ?Some global properties of contact structures,? Ann. Math.,69, No. 2, 421?450 (1959). · Zbl 0092.39301
[144] Minoru Harada, ?On Kähler manifolds satisfying the axiom of antiholomorphic 2-spheres,? Proc. Am. Math. Soc.,43, No. 1, 186?189 (1974). · Zbl 0253.53054
[145] Izumi Hasegawa, ?H-projective-recurrent Kählerian manifolds and Bochner-recurrent Kählerian manifolds,? Hokkaido Math. J.,3, No. 2, 271?278 (1974). · Zbl 0292.53025
[146] Shintaro Hashimoto, ?On the differentiable manifolds with certain almost contact structures which are similar to the quaternion structures. I,? Sci. Rep. Fac. Lit. Sci. Hirosaki Univ.,8, No. 2, 74?78 (1961). · Zbl 0173.50103
[147] Shintaro Hashimoto, ?On differentiable manifold with almost quaternion contact structure. I,? Sci. Rep. Fac. Lit. Sci. Hirosaki Univ.,8, No. 1, 1?7 (1961). · Zbl 0173.50201
[148] Shintaro Hashimoto, ?On differentiable manifold with almost quaternion contact structure. II,? Sci. Rep. Fac. Lit. Sci. Hirosaki Univ.,8, No. 2, 79?87 (1961). · Zbl 0173.50202
[149] Shintaro Hashimoto, ?On differentiable manifold with almost quaternion contact structure. III,? Sci. Rep. Fac. Lit. Sci. Hirosaki Univ.,10, No. 1, 5?9 (1963). · Zbl 0173.50203
[150] Yoji Hatakeyama, Yosuke Ogawa, and Shukichi Tanno, ?Some properties of manifolds with contact metric structure,? Tôhoka Math. J.,15, No. 1, 42?48 (1963). · Zbl 0196.54902
[151] Ram Hit, ?On H-projective recurrent Kähler spaces,? Proc. Indian Acad. Sci.,82A, No. 2, 41?45 (1975).
[152] Ram Hit, ?Semi-symmetric connection in an almost contact metric manifold,? Istanbul Univ. Fen. Fak. Mecm., Rev. Fac. Sci. Univ. Istanbul,A39, 47?51 (1974).
[153] Chorng-Shi Houh and Shigeru Ishihara, ?Tensor fields and connections on a cross section in the tangent bundle of order r,? K?dai Math. Semin. Repts.,24, No. 2, 234?250 (1972). · Zbl 0245.53016
[154] C. J. Hsu, ?On some structures which are similar to quaternion structure,? Tôhoku Math. J.,12, No. 3, 403?428 (1960). · Zbl 0104.16603
[155] C. J. Hsu, ?On some properties of?-structures on differentiable manifolds,? Tôhoku Math. J.,12, No. 3, 429?454 (1960). · Zbl 0095.36802
[156] Shigeru Ishihara, ?Quaternion Kählerian manifolds,? J. Different. Geom.,9, No. 4, 483?500 (1974). · Zbl 0297.53014
[157] Shigeru Ishihara, ?Quaternion Kählerian manifolds and fibered Riemannian spaces with Sasakian 3-structure,? K?dai Math. Semin. Repts.,25, No. 3, 321?329 (1973). · Zbl 0267.53023
[158] Shigeru Ishihara and M. Konishi, ?Fibered Riemannian space with Sasakian 3-structure,? Different. Geom. in honor of K. Yano, Kinokuniya, Tokyo, 179?194 (1972). · Zbl 0252.53041
[159] Teruo Iwatani, ?A note on nearly Kähler manifolds. I,? Mem. Fac. Sci. Kyushu Univ.,A30, No. 1, 43?48 (1976). · Zbl 0319.53022
[160] Teruo Iwatani, ?A note on nearly Kähler manifolds. II,? Mem. Fac. Sci. Kyushu Univ.,A30, No. 1, 49?53 (1976). · Zbl 0319.53022
[161] Shôji Kanemaki, ?Twisted f-structures. I,? Tensor,27, No. 1, 63?69 (1973).
[162] Shôji Kanemaki, ?Twisted f-structures. II,? Tensor,27, No. 1, 70?72 (1973).
[163] Shôji Kanemaki, ?Products of f-manifolds,? TRU Math.,10, 11?17 (1974).
[164] Shôji Kanemaki, ?Quasi-Sasakian manifolds,? Tohoku Math. J.,29, No. 2, 227?233 (1977). · Zbl 0368.53031
[165] T. Kashiwada, ?A note on a Riemannian space with Sasakian 3-structure,? Nat. Sci. Rep. Ochanomizu Univ.,22, No. 1, 1?2 (1971). · Zbl 0228.53033
[166] A. Kawaguchi, ?Theory of connections in a Kawaguchi space of higher order,? Proc. Imp. Acad. Tokyo,13, 287?240 (1937). · Zbl 0019.32802
[167] Jin Bai Kim, ?Notes on f-manifolds,? Tensor,29, No. 3, 299?302 (1975).
[168] S. Kobayashi, ?On connections of Cartan,? Can. J. Math.,8, No. 2, 145?156 (1956). · Zbl 0075.31502
[169] S. Kobayashi, ?Theory of connections,? Ann. Math. Pura ed Appl.,43, 119?194 (1957). · Zbl 0124.37604
[170] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. I, Interscience, New York-London (1963). · Zbl 0119.37502
[171] I. Kola?, ?Canonical forms on the prolongations of principle fibre bundles,? Rev. Roum. Math. Pures et Appl.,16, No. 7, 1091?1106 (1971).
[172] I. Kola?, ?On the absolute differentiation of geometric object fields,? Ann. Pol. Math.,27, No. 3, 293?304 (1973).
[173] Mariko Konishi, ?Note on regular K-contact 3-structures,? Nat. Sci. Rep., Ochanomizu Univ.,24, No. 1, 1?5 (1973). · Zbl 0277.53022
[174] Ying-Yan Kuo, ?On almost contact 3-structure,? Tôhoku Math. J.,22, No. 3, 325?332 (1970). · Zbl 0205.25801
[175] Ying-Yan Kuo and S. Tachibana, ?On the distribution appeared in contact 3-structure,? Taita J. Math.,2, 17?24 (1970). · Zbl 0231.53053
[176] R. D. S. Kushwaha, ?On almost contact manifolds with a specified affine connexion,? Indian J. Pure Appl. Math.,5, No. 3, 246?253 (1974). · Zbl 0312.53025
[177] T. Levi-Civita, ?Nozioni di parallelismo in una varietà qualinque e consequente specificazione geometrica della curvature Riemanniana,? Rend. Circ. Matem. Palermo,42, 173?205 (1917). · JFM 46.1125.02
[178] P. Libermann, ?Sur les automorphimes infinitésimaux des structures symplectiques et des structures de contact,? Colloq. Géom. Différent. Globale, Bruxelles, 37?59 (1958).
[179] A. Lichnerowicz, ?Un théorème sur les espaces homogènes complexes,? Arch. Math.,5, Nos. 1?3, 207?215 (1954). · Zbl 0057.38202
[180] V. Mangione, ?Su alcune classi di connessioni di una varietà quasi complessa,? Riv. Math. Univ. Parma,9, 139?153 (1968).
[181] E. Martinelli, ?Puni di vista geometrici nello studio nelle varietà a struttura complessa,? C. I. M. E. Cremonese, Roma (1956).
[182] Masatsune Matsumoto, ?On Kählerian spaces with parallel or vanishing Bochner curvature tensor,? Tensor,20, No. 1, 25?28 (1969). · Zbl 0174.25001
[183] R. S. Millman, ?On certain types of manifolds with f-structure,? J. Math. Soc. Jpn.,26, No. 1, 83?91 (1974). · Zbl 0258.58002
[184] R. S. Millman, ?Some results in f-structures motivated by the Cousin problem,? Proc. Symp. Pure Math., Stanford, Calif.,27, Part 2 (1973). · Zbl 0308.53031
[185] R. S. Mishra, ?On a Hermite space,? Tensor,19, No. 1, 27?32 (1968). · Zbl 0152.39302
[186] R. S. Mishra, ?On almost contact manifolds with a specified affine connexion,? Tensor,23, No. 1, 41?45 (1972). · Zbl 0239.53029
[187] R. S. Mishra, ?On almost complex manifolds. III,? Tensor,20, No. 3, 361?366 (1969). · Zbl 0179.50703
[188] R. S. Mishra, ?Affine connexions in an almost Gray manifold,? Tensor,23, No. 3, 317?322 (1972). · Zbl 0265.53034
[189] R. S. Mishra, ?On Sasakian manifolds. I,? Indian J. Pure Appl. Math.,1, No. 1, 98?105 (1970). · Zbl 0207.20504
[190] R. S. Mishra, ?On Sasakian manifolds. II,? Indian J. Pure Appl. Math.,3, No. 5, 739?749 (1972). · Zbl 0266.53038
[191] R. S. Mishra, ?A generalised theory of differential structures,? Tensor,31, No. 2, 155?164 (1977). · Zbl 0371.53024
[192] R. S. Mishra and Ram Hit, ?Almost complex manifolds. III,? Indian J. Pure Appl. Math.,3, No. 2, 273?277 (1972). · Zbl 0241.53021
[193] Akihiko Morimoto, ?Liftings of some types of tensor fields and connections to tangent bundles of pr-velocities,? Nagoya Math. J.,40, 13?31 (1970). · Zbl 0208.24401
[194] Akihiko Morimoto, ?Prolongations of connections to tangential fibre bundles of higher order,? Nagoya Math. J.,40, 85?97 (1970). · Zbl 0208.50102
[195] Akihiko Morimoto, ?Liftings of tensor fields and connections to tangent bundles of higher order,? Nagoya Math. J.,40, 99?120 (1970). · Zbl 0208.50201
[196] Akihiko Morimoto, ?Prolongation of connections to bundles of infinitely near points,? J. Different. Geom.11, No. 4, 479?498 (1976). · Zbl 0358.53013
[197] Shigeru Nakayama, ?On a classification of an almost contact metric structure,? Tensor,19, No. 1, 1?7 (1968). · Zbl 0156.42603
[198] A. M. Naveira and L. M. Hervella, ?Schur’s theorem for nearly Kähler manifolds,? Proc. Am. Math. Soc.,49, No. 2, 421?425 (1975). · Zbl 0282.53021
[199] A. M. Naveira and L. M. Hervella, ?Quasi-Kähler manifolds,? Proc. Am. Math. Soc. University,49, No. 2, 327?333 (1975).
[200] A. Nijenhuis, ?Xn?1-forming sets of eigenvectors,? Proc. Konikl. Nederl. Akad. Wet.,A54, No. 2, 200?212 (1951), Indagationes Math.,13, No. 2, 200?212 (1951). · Zbl 0042.16001
[201] Katsumi Nomizu, ?Invariant affine connexions on homogeneous spaces,? Am. J. Math.,76, No. 1, 33?65 (1954). · Zbl 0059.15805
[202] M. Obata, ?Hermitian manifolds with quaternion structure,? Tôhoku Math. J.,10, No. 1, 11?18 (1958). · Zbl 0093.35403
[203] Noriko Ogitsu and Keiko Iwasaki, ?On a characterization of the Bochner curvature tensor=0,? Nat. Sci. Rep. Ochanomizu Univ.,25, No. 1, 1?6 (1974). · Zbl 0303.53029
[204] K. Ogiue, ?Theory of conformal connections,? K?dai Math. Semin. Repts.,19, No. 2, 193?244 (1967). · Zbl 0163.16501
[205] Masafumi Okumura, ?Certain hypersurfaces of an odd dimensional sphere,? Tôhoku Math. J.,19, No. 4, 381?395 (1967). · Zbl 0161.41104
[206] José A. Oubiña and Pedro Martinez Gadea, ?Une connexion caractérisant l’integrabilité d’une?(4, {\(\pm\)}2)-structure,? C. R. Acad. Sci.,AB286, No. 11, 523?525 (1978).
[207] Nirmala Prakash and Neera Bahadur, ?On lifts of quartic structure,? Indian J. Pure Appl. Math.,4, Nos. 11?12, 898?904 (1973). · Zbl 0327.57014
[208] Nirmala Prakash, ?Curvature structures in nearly Kaehlerian manifolds,? Tensor,29, No. 2, 179?186 (1975). · Zbl 0305.53034
[209] Baij Nath. Prasad, ?On a Kählerian space with recurrent Bochner curvature tensor,? Atti Accad. Naz. Lincei, Sl. Ski. Fis., Mat. N., Rend.,53, Nos. 1?2, 87?93 (1972). · Zbl 0264.53032
[210] S. C. Rastogi, ?On (f, g, ur|?r |-structure,? Indian J. Pure Appl. Math.,6, No. 8, 869?878 (1975). · Zbl 0359.53008
[211] M. P. S. Rathore and R. S. Mishra, ?On Sasakian manifold with recurrent curvature tensors,? Indian J. Pure Appl. Math.,6, No. 3, 219?226 (1975). · Zbl 0347.53021
[212] G. B. Rizza, ?Sulle connessioni di una varietà quasi complessa,? Ann. Mat. Pure ed Appl.,68, No. 4, 233?254 (1965). · Zbl 0132.16603
[213] G. B. Rizza, ?Connessioni metriche sulle varietà quasi hermitiane,? Rend. 1st. Mat. Univ. Trieste,II (1969). · Zbl 0192.58903
[214] G. B. Rizza, ?Teoremi di representazione per alcune classi di connessioni su di una varietà quasi complessa,? Rend. Ist. Mat. Univ. Trieste,1(1), 9?25 (1969). · Zbl 0183.50701
[215] R. Rosca and L. Vanhecke, ?Champs parallèles sur une variété Kählérienne et sous-variété antihólomorphes,? Rev. Roum. Math. Pures et Appl.,21, No. 3, 367?376 (1976).
[216] H. Rund, The Differential Geometry of Finsler Spaces, Springer, Berlin-Göttingen-Heidelberg (1959). · Zbl 0087.36604
[217] Shigeo Sasaki, ?A characterization of contact transformations,? Tôhoku Math. J.,16, No. 3, 285?290 (1964). · Zbl 0137.14902
[218] Shigeo Sasaki, ?On spherical space forms with normal contact metric 3-structure,? J. Different. Geom.,6, 307?315 (1972). · Zbl 0245.53044
[219] Shigeo Sasaki, ?On differentiable manifolds with certain structures which are closely related to almost contact structure. I,? Tôhoku Math. J.,12, No. 3, 459?476 (1960). · Zbl 0192.27903
[220] Shigeo Sasaki and Y. Hatakeyama, ?On differentiable manifolds with certain structures which are closely related to almost contact structure. II,? Tôhoku Math. J.,13, 281?294 (1961). · Zbl 0112.14002
[221] Isuke Satô, ?On a structure similar to Sasakian 3-structure,? Tôhoku Math. J.,25, No. 4, 405?415 (1973). · Zbl 0274.53036
[222] Isuke Satô, ?On a structure similar to almost contact structures. I,? Tensor,30, No. 3, 219?224 (1976).
[223] Isuke Satô, ?On a structure similar to almost contact structure. II,? Tensor,31, No. 2, 199?205 (1977).
[224] S. Sawaki, ?Sufficient conditions for an almost Hermitian manifold to be Kählerian,? Hokkaido Math. J.,1, No. 1, 21?29 (1972). · Zbl 0253.53023
[225] S. Sawaki and Kouei Sekigawa, ?Almost Hermitian manifolds with constant holomorphic sectional curvature,? J. Different. Geom.,9, No. 1, 123?134 (1974). · Zbl 0277.53036
[226] J. A. Schouten, ?Der Ricci-Kahkül. On differentiable manifolds with certain structures which are closely related to almost contact structures,?9, No. 11 (1974).
[227] J. A. Schouten and K. Yano, ?On an intrinsic connexion in an X2n with almost Hermitian structure,? Proc. Koninkl. Nederl. Akad. Wet.,A58, No. 1, 1?9 (1955). · Zbl 0067.39903
[228] J. A. Schouten and K. Yano, ?On invariant subspaces in almost complex X2n,? Proc. Konikl. Nederl. Akad. Wet.,A58, No. 3, 261?269 (1955).
[229] Masami Sekizawa, ?On conformal Killing tensors of degree 2 in Kählerian spaces,? TRU Math.,6, 1?5 (1970). · Zbl 0238.53017
[230] K. D. Singh and Rakeshwar Singh, ?On some (?f1, ?f2) structure manifolds,? Demonstr. Math.,10, Nos. 3?4, 663?670 (1977). · Zbl 0375.53023
[231] K. D. Singh and Rakeshwar Singh, ?Some f(3, ?) structure manifolds,? Demonstr. Math.,10, Nos. 3?4, 637?645 (1977). · Zbl 0371.53030
[232] K. D. Singh and Nilima Srivastava, ?On some f-structure manifolds with torsion,? Demonstr. Math.,7, No. 2, 183?196 (1974). · Zbl 0288.53033
[233] S. S. Singh, ?On Kählerian projective symmetric and Kählerian projective recurrent spaces,? Atti Acad. Naz. Lincei, Cl. Sci., Fis., Mat. Nat., Rend.,54, No. 1, 75?81 (1973). · Zbl 0278.53019
[234] S. S. Singh, ?Some theorems on Kählerian spaces with parallel Bochner curvature tensor,? Atti Accad. Naz. Lincei, Cl. Sci., Fis., Mat. Nat., Rend.,54, No. 2, 205?209 (1973). · Zbl 0284.53042
[235] S. S. Singh, ?On a Kählerian space with recurrent holomorphic projective curvature tensor,? Atti. Accad. Naz. Lincei, Cl. Sci., Fis., Mat. Nat. Rend.,55, Nos. 3?4, 214?218 (1974). · Zbl 0302.53014
[236] S. S. Singh, ?Conharmonic transformations of Einstein-Kähler spaces with Bochner curvature tensor,? Atti Accad. Naz. Lincei, Cl. Sci., Fis., Mat. Nat., Rend.,57, No. 6, 559?564 (1974).
[237] Rathore M. P. Singh and R. S. Mishra, ?Properties of Tachibana concircular curvature tensor,? Indian J. Pure Appl. Math.,4, Nos. 5?6, 568?575 (1973). · Zbl 0275.53016
[238] B. B. Sinha, ?On almost complex spaces,? Indian J. Pure Appl. Math.,2, No. 3, 422?428 (1971). · Zbl 0219.53026
[239] B. B. Sinha, ?On H-projective connexions,? Indian J. Pure Appl. Math.,3, No. 2, 263?267 (1972).
[240] B. B. Sinha, ?Analytic vector fields in almost Sasakian manifold,? An. Univ. Timisoara, Ser. Sti. Mat.,12, No. 2, 161?166 (1974) (1977). · Zbl 0446.53029
[241] B. B. Sinha and D. N. Chaubey, ?On affine connexions in almost complex manifolds,? Indian J. Pure Appl. Math.,6, No. 3, 247?252 (1975). · Zbl 0347.53007
[242] B. B. Sinha and G. Das, ?General F-connection and H-projectively related connections in almost product space,? Riv. Mat. Univ. Parma,1, 221?230 (1972). · Zbl 0301.53019
[243] B. B. Sinha and I. J. P. Singh, ?Generalized (f, g, u, v, ?)-structure,? Proc. Indian Acad.,A81, No. 1, 1?8 (1975).
[244] B. B. Sinha and I. J. P. Singh, ?On H-curvature tensors in almost product and almost decomposable manifold,? Indian J. Pure Appl. Math.,7, No. 1, 28?31 (1976). · Zbl 0362.53032
[245] Gr. Stanilov and V. Mihova-Nehmer, ?Analog of Blair’s theorem in the case of nearly Kähler manifolds,? Dokl. Bolg. Akad. Nauk,30, No. 7, 977?980 (1977). · Zbl 0382.53030
[246] P. Stavre, ?On fibering with A2-structure and?-semi-symmetric connections,? An. Sti. Univ. Iasi,20, Sec. 1A, No. 1, 133?137 (1974).
[247] Shun-ichi Tachibana, ?On the Bochner curvature tensor,? Nat. Sci. Rep. Ochanomizu Univ.,18, No. 1, 15?19 (1967). · Zbl 0161.41202
[248] Shun-ichi Tachibana and Liu Richard Chieng, ?Notes on Kählerian metrics with vanishing Bochner curvature tensor,? Kodai Math. Semin. Repts.,22, No. 3, 313?321 (1970). · Zbl 0199.25303
[249] Shun-ichi Tachibana and W. N. Yu, ?On Riemannian space admitting more than one Sasakian structures,? Tôhoku Math. J.,22, No. 4, 535?540 (1970). · Zbl 0213.48301
[250] Kazuo Takano, ?On a space with birecurrent curvature,? Tensor,22, No. 3, 329?332 (1971).
[251] Seizi Takizawa, ?On contact structures of real and complex manifolds,? Tôhoku Math. J.,15, No. 3, 227?252 (1963). · Zbl 0122.40704
[252] Shûkichi Tanno, ?Quasi-Sasakian structures or rank 2p + 1,? J. Different. Geom.,5, Nos. 3?4, 317?324 (1971). · Zbl 0221.53051
[253] Yoshihiro Tashiro, ?On a holomorphically projective correspondence in an almost complex space,? Math. J. Okayama Univ.,6, No. 2, 147?152 (1957). · Zbl 0077.35501
[254] Keinosuke Tonooka, ?A generalisation of Cartan space,? J. Math. Soc. Jpn., No. 4 (1952). · Zbl 0049.11902
[255] F. Tricerri, ?Su alcune classi di connessioni sopra varietà quasi complesse,? Riv. Mat. Univ. Parma,12, 189?197 (1971). · Zbl 0282.53027
[256] F. Tricerri, ?Connessioni a campo quasi parallelo,? Rend. Semin. Mat. Univ. Politechn. Torino,31, 393?404 (1971?1973) (1974).
[257] Susumu Tsuchiya and Minoru Kobayashi, ?Some conditions for constancy of the holomorphic sectional curvature,? Kodai Math. Semin. Repts.,27, No. 3, 379?384 (1976). · Zbl 0326.53031
[258] C. Udriste, ?On fibering of almost coquaternion manifolds,? An. Sti. Univ. Iasi. Matematica,18, 407?415 (1972). · Zbl 0249.53027
[259] C. Udriste, ?Coquaternion structures and almost coquaternion structures,? Math. Balkan,4, 635?642 (1974). · Zbl 0307.53019
[260] C. Udriste, ?On contact 3-structures,? Bul. Univ. Brasov,C16, 85?92 (1974).
[261] C. Udriste, ?Almost coquaternion metric structures on 3-dimensional manifolds,? Kodai Math. Semin. Repts.,26, Nos. 2?3, 318?326 (1975). · Zbl 0306.53036
[262] Ratna Upadhyay, ?Some problems on complete and horizontal lifts of F(k, k?2)-structure,? Demonstr. Math.,10, Nos. 3?4, 539?545 (1977). · Zbl 0368.53022
[263] E. Vamanu, ?Automorfisme infinitezimale ale unei r-?-structuri,? An. Sti. Univ. Iasi,16, Sec. 1a, No. 2, 377?381 (1970).
[264] E. Vamanu, ?Despre spatti dotate cu o r-?-structura care admit un grup simplu tranzitiv,? Stud. si Cerc. Mat.,22, No. 9, 1365?1374 (1970).
[265] L. Vanhecke, ?Some theorems for quasi- and nearly Kähler manifolds,? Boll. Unione Mat. Ital.,12, No. 3, Suppl., 174?188 (1975). · Zbl 0324.53047
[266] L. Vanhecke, ?Almost Hermitian manifolds with J-invariant Riemann curvature tensor,? Rend. Semin. Mat. Univ. Politechn, Torino,34, 487?498 (1975?1976).
[267] L. Vanhecke, ?On immersions with trivial normal connection in some almost Hermitian manifolds,? Rend. Mat.,10, No. 1, 75?86 (1977). · Zbl 0363.53010
[268] Costa Enrique Vidal, ?Conexiones en las variedades casi-producto y foliaciones,? Collect. Math.,24, No. 3, 297?324 (1973).
[269] G. Vranceanu, Opera Matematica, Vol. I, Acad. R. S. R., Bucaresti (1969).
[270] G. Vranceanu, Opera Matematica, Vol.II, Acad. R. S. R., Bucaresti (1971).
[271] Yoshiko Watanabe, ?Totally umbilical surfaces in normal contact Riemannian manifolds,? Kodai Math. Semin. Repts.,19, No. 4, 474?487 (1967). · Zbl 0155.30801
[272] André Weil, ?Théorie des points proches sur les variétés differéntiables,? Colloq. Intern. du Centre National de la Recherche Sci. 52, Geom. Différent., Strasbourg, 111?117 (1953).
[273] H. Weyl, Raum, Zeit, Materie, Berlin (1918).
[274] Toshikiyo Yamada, ?On a certain recurrent space and HP-transformation in a Kählerian manifold,? J. Asahikawa Techn. Coll., No. 13, 103?109 (1976).
[275] Seiichi Yamaguchi, ?On hypersurfaces in Sasakian manifolds,? Kodai Math. Semin. Repts.,21, No. 1, 64?72 (1969). · Zbl 0184.47102
[276] Seiichi Yamaguchi, ?The first Betti number of a compact almost Tachibana space,? J. Different. Geom.,9, No. 1, 93?95 (1974). · Zbl 0276.53030
[277] Seiichi Yamaguchi, ?On a Killing p-form in a compact Kählerian manifold,? Tensor,29, No. 3, 274?276 (1975). · Zbl 0305.53052
[278] Kentaro Yano, ?On a structure defined by a tensor field f of type (1,1) satisfying f3 + f=0,? Tensor,14, 99?109 (1963).
[279] Kentaro Yano, The Differential Geometry on Complex and Almost Complex Spaces, Pergamon Press, Oxford-London (1965).
[280] Kentaro Yano and Mitsue Ako, ?On certain operators associated with tensor fields,? Kodai Math. Semin. Repts.,20, No. 4, 414?436 (1968). · Zbl 0167.19702
[281] Kentaro Yano, Sang-Seup Eum, and U-Hang Ki, ?An almost contact affine 3-structure,? Kodai Math. Semin. Repts.,25, No. 2, 129?142 (1973). · Zbl 0258.53032
[282] Kentaro Yano, Chorng-Shi Houh, and Bang-Yen Chen, ?Structures defined by a tensor field? of type (1,1) satisfying? 4{\(\pm\)}? 2=0,? Tensor,23, No. 1, 81?87 (1972). · Zbl 0228.53030
[283] Kentaro Yano and S. Ishihara, ?Horizontal lifts of tensor fields and connections to tangent bundles,? J. Math. Mech.,16, No. 9, 1015?1029 (1967). · Zbl 0152.20403
[284] Kentaro Yano and S. Ishihara, ?Differential geometry of tangent bundles of order 2,? Kodai Math. Semin. Repts.,20, No. 3, 318?354 (1968). · Zbl 0167.19703
[285] Kentaro Yano and S. Ishihara, ?Kaehlerian manifolds with constant scalar curvature whose Bochner curvature tensor vanishes,? Hokkaido Math. J.,3, No. 2, 293?304 (1974). · Zbl 0291.53032
[286] Kentaro Yano and Shoshichi Kobayashi, ?Prolongations of tensor fields and connections to tangent bundles. I. General Theory,? J. Math. Soc. Jpn.,18, No. 2, 194?210 (1966). · Zbl 0141.38702
[287] Kentaro Yano and I. Mogi, ?On real representations of Kaehlerian manifolds,? Ann. Math.,61, No. 1, 170?189 (1955). · Zbl 0064.16302
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.