Multiobjective network scheduling with efficient use of renewable and nonrenewable resources. (English) Zbl 0455.90049


90B35 Deterministic scheduling theory in operations research
90C90 Applications of mathematical programming
90C31 Sensitivity, stability, parametric optimization
Full Text: DOI


[1] Benayoun, B.; de Montgolfier, J.; Tergny, J.; Laritchev, O., Linear programming with multiple objective functions: step method (STEM), Math. Prog., 1, 336-375 (1972) · Zbl 0242.90026
[2] Cooper, W.; Charnes, A., Goal programming and multiple objective optimizations, Europ. J. Operational Res., 1, 39-54 (1977), Part I · Zbl 0375.90079
[3] Davis, E. W., Project scheduling under resource constraints - historical review and categorization of procedures, AIIE Trans., 5, 297-313 (1973)
[4] Khachian, L. G., A polynomial - bounded algorithm for linear programming, Dokl. Akad. Nauk SSSR, 244, 1093-1096 (1979) · Zbl 0414.90086
[5] Lin, S.; Kernighan, B. W., An effective heuristic for the traveling salesman problem, Operations Res., 21, 498-516 (1973) · Zbl 0256.90038
[6] Little, J. D.C.; Murty, K. G.; Sweeny, D. W.; Karel, C., An algorithm for the traveling salesman problem, Operations Res., 11, 972-989 (1963) · Zbl 0161.39305
[7] Roy, B., Problems and methods with multiple objective functions, Math. Prog., 1, 239-266 (1971) · Zbl 0254.90061
[8] Słowiński, R., Optimal and heuristic procedures for project scheduling with multiple constrained resources — a survey, Found. Control Engng., 2, 33-49 (1977) · Zbl 0373.90032
[9] Słowiński, R., Modèles et méthodes d’allocation optimale de moyens limités dans le complexe d’operations orientations nouvelles, Cybernetica, 21, 125-139 (1978) · Zbl 0385.90057
[10] Słowiński, R., A node ordering heuristic for network scheduling under multiple resource constraints, Found. Control Engrg., 3, 19-27 (1978) · Zbl 0384.90050
[11] Słowiński, R., Scheduling preemptable tasks on unrelated processors with additional resources to minimize schedule length, (Bracchi, G.; Lockemann, P. C., Information Systems Methodology - Lecture Notes in Computer Science, 65 (1978), Springer: Springer Berlin), 536-547
[12] R. Słowiński, Two approaches to problems of resource allocation among project activities - a comparative study, J. Operational Res. Soc. to appear.; R. Słowiński, Two approaches to problems of resource allocation among project activities - a comparative study, J. Operational Res. Soc. to appear. · Zbl 0439.90042
[13] Słowiński, R., Allocation de ressources limitées parmi des tâches exécutées par un ensemble de machines indépendantes, (Pelegrin, M.; Delmas, J., Comparison of Automatic Control and Operational Research Techniques Applied to Large Systems Analysis and Control (1979), Pergamon Press: Pergamon Press Oxford), 189-195 · Zbl 0449.90052
[14] Steuer, R. E., An interactive multiple objective linear programming procedure, (Starr, M. K.; Zeleny, M., Multiple Criteria Decision Making — TIMS Studies in the Management Sciences, 6 (1977), North-Holland: North-Holland Amsterdam), 225-239
[15] Talbot, F. B.; Patterson, J. H., An efficient integer programming algorithm with network cuts for solving resource-constrained project scheduling problem, Manag. Sci., 24, 1163-1174 (1978) · Zbl 0395.90036
[16] Wȩglarz, J., New models and procedures for resource allocation problems, (Proc. of the 6th Internet Congress, Vol. 2 (1979), VDI GmbH: VDI GmbH Düsseldorf), 521-530
[17] Wȩglarz, J., On certain models of resource allocation problems, Kybernetes, 9, 61-66 (1979) · Zbl 0421.90049
[18] Wȩglarz, J.; Błazewicz, J.; Cellary, W.; Słowiński, R., Algorithm 520: An automatic revised simplex method for constrained resource network scheduling, ACM Trans. on Mathematical Software, 3, 295-300 (1977) · Zbl 0374.90033
[19] Zimmermann, H.-J., Fuzzy programming and linear programming with several objective functions, Fuzzy Sets and Systems, 1, 45-55 (1978) · Zbl 0364.90065
[20] Zionts, S.; Wallenius, J., An interactive programming for solving the multiple criteria problem, Manag. Sci., 22, 652-663 (1976) · Zbl 0318.90053
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.