Straubing, Howard A generalization of the Schützenberger product of finite monoids. (English) Zbl 0456.20048 Theor. Comput. Sci. 13, 137-150 (1981). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 53 Documents MSC: 20M35 Semigroups in automata theory, linguistics, etc. 20M05 Free semigroups, generators and relations, word problems 68T99 Artificial intelligence Keywords:product of finite monoids; free monoid; recognizable subset; syntactic monoid; concatenation product; dot-depth hierarchy PDF BibTeX XML Cite \textit{H. Straubing}, Theor. Comput. Sci. 13, 137--150 (1981; Zbl 0456.20048) Full Text: DOI References: [1] Brzozowski, J. A., Hierarchies of aperiodic languages, Rev. Automat. Informat. Recherche Opérationelle, 10, 33-49 (1976) [2] Brzozowski, J. A.; Knast, R., The dot-depth hierarchy of star-free languages is infinite, J. Comput. System Sci., 16, 37-55 (1978) · Zbl 0368.68074 [3] Clifford, A. H.; Preston, G. B., The Algebraic Theory of Semigroups, Vol. 1 (1961), American Mathematical Society: American Mathematical Society Providence, RI · Zbl 0111.03403 [4] Cohen, R. S.; Brzozowski, J. A., Dot-depth of star-free events, J. Comput. System Sci., 5, 1-15 (1971) · Zbl 0217.29602 [5] Eilenberg, S., Automata, Languages and Machines, Vol. B (1976), Academic Press: Academic Press New York [6] Knast, R., Semigroup characterizations of dot-depth one languages (1975), Institute of Mathematics, Polish Academy of Sciences [7] Krohn, K. B.; Rhodes, J.; Tilson, B., (Arbib, M. A., The Algebraic Theory of Machines, Languages and Semigroups (1968), Academic Press: Academic Press New York), Ch. 1-5 [8] Schützinberger, M. P., On finite monoids having only trivial subgroups, Information and Control, 8, 190-194 (1965) · Zbl 0131.02001 [9] Schützenberger, M. P., Sur le produit de concatenation non ambigu, Semigroup Forum, 13, 47-75 (1976) · Zbl 0373.20059 [10] Simon, I., Piecewise testable events, (Proc. 2nd AI Professional Conference on Automata Theory and Formal Languages. Proc. 2nd AI Professional Conference on Automata Theory and Formal Languages, Lecture Notes in Computer Science (1976), Springer: Springer Berlin) · Zbl 0316.68034 [11] Straubing, H., Varieties of recognizable sets whose syntactic monoids contain solvable groups, (Ph.D. Thesis (1978), University of California: University of California Berkeley) [13] Tilson, B., Automata, Languages and Machines, Vol. B (1976), Academic Press: Academic Press New York, Ch. XI and XII This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.