×

A generalization of the Schützenberger product of finite monoids. (English) Zbl 0456.20048


MSC:

20M35 Semigroups in automata theory, linguistics, etc.
20M05 Free semigroups, generators and relations, word problems
68T99 Artificial intelligence
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Brzozowski, J. A., Hierarchies of aperiodic languages, Rev. Automat. Informat. Recherche Opérationelle, 10, 33-49 (1976)
[2] Brzozowski, J. A.; Knast, R., The dot-depth hierarchy of star-free languages is infinite, J. Comput. System Sci., 16, 37-55 (1978) · Zbl 0368.68074
[3] Clifford, A. H.; Preston, G. B., The Algebraic Theory of Semigroups, Vol. 1 (1961), American Mathematical Society: American Mathematical Society Providence, RI · Zbl 0111.03403
[4] Cohen, R. S.; Brzozowski, J. A., Dot-depth of star-free events, J. Comput. System Sci., 5, 1-15 (1971) · Zbl 0217.29602
[5] Eilenberg, S., Automata, Languages and Machines, Vol. B (1976), Academic Press: Academic Press New York · Zbl 0359.94067
[6] Knast, R., Semigroup characterizations of dot-depth one languages (1975), Institute of Mathematics, Polish Academy of Sciences
[7] Krohn, K. B.; Rhodes, J.; Tilson, B., (Arbib, M. A., The Algebraic Theory of Machines, Languages and Semigroups (1968), Academic Press: Academic Press New York), Ch. 1-5 · Zbl 0181.01501
[8] Schützinberger, M. P., On finite monoids having only trivial subgroups, Information and Control, 8, 190-194 (1965) · Zbl 0131.02001
[9] Schützenberger, M. P., Sur le produit de concatenation non ambigu, Semigroup Forum, 13, 47-75 (1976) · Zbl 0373.20059
[10] Simon, I., Piecewise testable events, (Proc. 2nd AI Professional Conference on Automata Theory and Formal Languages. Proc. 2nd AI Professional Conference on Automata Theory and Formal Languages, Lecture Notes in Computer Science (1976), Springer: Springer Berlin) · Zbl 0316.68034
[11] Straubing, H., Varieties of recognizable sets whose syntactic monoids contain solvable groups, (Ph.D. Thesis (1978), University of California: University of California Berkeley)
[12] H. Straubing, A periodic homomorphisms and the concatenation product of recognizable sets, J. Pure Appl. Algebra; H. Straubing, A periodic homomorphisms and the concatenation product of recognizable sets, J. Pure Appl. Algebra · Zbl 0407.20056
[13] Tilson, B., Automata, Languages and Machines, Vol. B (1976), Academic Press: Academic Press New York, Ch. XI and XII · Zbl 0359.94067
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.