Tartakoff, David S. The local real analyticity of solutions to d’Alembert-Operator(b) and the (partial d)–Neumann problem. (English) Zbl 0456.35019 Acta Math. 145, 177-204 (1980). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 7 ReviewsCited in 62 Documents MSC: 35H10 Hypoelliptic equations 32T99 Pseudoconvex domains 35N15 \(\overline\partial\)-Neumann problems and formal complexes in context of PDEs 35S15 Boundary value problems for PDEs with pseudodifferential operators Keywords:analytic hypoellipticity; Neumann problem; subelliptic partial differential operators; pseudo-convex domains; Levi form; characteristics of higher multiplicity; pseudo-differential operators Citations:Zbl 0384.35020; Zbl 0384.35055; Zbl 0455.35040 × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Agmon, S., Douglis, A. &Nirenberg,L., Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, IComm. Pure Appl. Math., 12 (1959), 623–727; II,ibid., 17 (1964), 35–92. · Zbl 0093.10401 · doi:10.1002/cpa.3160120405 [2] Ash, M. E., The basic estimate of the \(\bar \partial \) -Neumannn problem in the non-Kählerian case.Amer. J. Math., 86 (1964), 247–254. · Zbl 0124.31103 · doi:10.2307/2373162 [3] Baouendi, M. S. &Goulaouic, C., Analyticity for degenerate elliptic equations and applications.Proc. Symposia in Pure Math., 23 (1971), 79–84. · Zbl 0231.35032 [4] Boutet De Monvel, L., Comportement d’un opérateur pseudo-differentiel sur une variété à bord, I, II.,J. Anal. Math., 17 (1966), 241–304. · Zbl 0161.07902 · doi:10.1007/BF02788660 [5] Conner, P. E., The Neumann’s problem for differential forms on Riemannian manifolds.Mem. Amer. Math. Soc., 20, 1956. · Zbl 0070.31404 [6] Derridj, M., Sur la régularité Gevrey jusqu’au bord des solutions du problème de Neumann pour \(\bar \partial \) .Proc. Symposia in Pure Math., 30:1 (1977), 123–126. [7] Derridj, M. &Tartakoff, D. S., On the global real analyticity of solutions to the \(\bar \partial \) -Neumann problem.Comm. Partial Differential Equations, 1 (1976), 401–435. · Zbl 0441.35049 · doi:10.1080/03605307608820016 [8] Derridj, M. & Tartakoff, D. S. Sur la régularité locale des solutions du problème de Neumann pour \(\bar \partial \) .Journées sur les fonctions analytiques, in Springer Lecture Notes in Math., 578, 1977, 207–216. · Zbl 0358.35056 [9] Dynin, A., Pseudodifferential operators on Heisenberg groups. To appear. · Zbl 0328.58017 [10] Folland, G. B. & Kohn, J. J.,The Neumann Problem for the Cauchy-Riemann Complex. Annals of Math. Studies Number 75, Princeton, 1972. · Zbl 0247.35093 [11] Folland, G. B. &Stein, E. M., Estimates for the \(\bar \partial _b \) complex and analysis on the Heisenberg group.Comm. Pure Appl. Math., 27 (1974), 429–522. · Zbl 0293.35012 · doi:10.1002/cpa.3160270403 [12] Garabedian, P. &Spencer, D. C., Complex boundary value problems.Trans. Amer. Math. Soc., 73 (1952), 223–242. · Zbl 0049.18101 · doi:10.1090/S0002-9947-1952-0051326-X [13] Greiner, P. C. & Stein, E. M., Estimates for the \(\bar \partial \) -Neumann Problem Princeton, 1977. · Zbl 0354.35002 [14] Hörmander, L., Fourier integral operators, I.,Acta Math., 128 (1971), 79–183. · Zbl 0212.46601 · doi:10.1007/BF02392052 [15] –,Linear partial Differential Operators. Springer Verlag, New York, 1963. · Zbl 0108.09301 [16] –, Pseudo-differential operators and non-elliptic boundary problems.Ann. of Math., 83 (1966), 129–209. · Zbl 0132.07402 · doi:10.2307/1970473 [17] –,An Introduction to Complex Analysis in Several Variables, Van Nostrand, Princeton, 1966. · Zbl 0138.06203 [18] Kohn, J. J., Harmonic integrals on strongly pseudoconvex manifolds, I.Ann. of Math., 78 (1963), 112–148; II,Ibid., 79 (1964), 450–472. · Zbl 0161.09302 · doi:10.2307/1970506 [19] –, Boundaries of complex manifolds.Proc. Conf. on Complex Manifolds (Minneapolis), Springer-Verlag, New York, 1965. · Zbl 0166.36003 [20] Kohn, J. J. &Nirenberg L., Non-coercive boundary value problems.Comm. Pure Appl. Math., 18 (1965), 443–492. · Zbl 0125.33302 · doi:10.1002/cpa.3160180305 [21] Kohn, J. J. &Spencer, D. C., Complex Neumann problems.Ann. of Math., 66 (1957), 89–140. · Zbl 0099.30605 · doi:10.2307/1970119 [22] Komatsu, G., Global analytic-hypoellipticity of the \(\bar \partial \) -Neuman problemTôhoku Math. J. Ser. 2, 28 (1976), 145–156. · Zbl 0319.35056 · doi:10.2748/tmj/1178240889 [23] Morrey, C. B. &Nirenberg, L., On the analyticity of the solutions of linear elliptic systems of partial differential equations.Comm. Pure Appl. Math., 10 (1957), 271–290. · Zbl 0082.09402 · doi:10.1002/cpa.3160100204 [24] Nirenberg, L.,Lectures on Partial Differential Equations. Texas Technical Univ., Lubbock, 1972. · Zbl 0241.32006 [25] Sato, M., Kawai, T. & Kashiwara, M.,Microfunction and Pseudo-differential Equations. Lecture notes in Mathematics 287, Springe 1973, 265–529. · Zbl 0277.46039 [26] Tartakoff, D. S., Gevrey hypoellipticity for subelliptic boundary value problems.Comm. Pure Appl. Math., 26 (1973), 251–312. · Zbl 0265.35023 · doi:10.1002/cpa.3160260302 [27] –, On the global real analyticity of solutions to b .Comm. Partial Differential Equations 1 (1976), 283–311. · doi:10.1080/03605307608820013 [28] –, Local Gevrey and quasianalytic hypoellipticity for b .Bull. Amer. Math. Soc., 82 (1976), 740–742. · Zbl 0331.35017 · doi:10.1090/S0002-9904-1976-14141-9 [29] Tartakoff, D. S., Remarks on the intersection of certain quasianalytic classes and the quasianalytic hypoellipticity of b To appear. [30] –, Local analytic hypoellipticity for b on non-degenerate Cauchy-Riemann manifolds.Proc. Nat. Acad. Sci. U.S.A., 75:7 (1978), 3027–3028. · Zbl 0384.35020 · doi:10.1073/pnas.75.7.3027 [31] Trèves, F., Analytic hypo-ellipticity of a class of peudodifferential operators with double characteristics and applications to the \(\bar \partial \) -Neumann problem.Comm. Partial Differential Equations, 3:6–7 (1978), 475–642. · Zbl 0384.35055 · doi:10.1080/03605307808820074 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.