×

zbMATH — the first resource for mathematics

Les variétés de dimension 4 à signature non nulle dont la courbure est harmonique sont d’Einstein. (French) Zbl 0456.53033

MSC:
53C25 Special Riemannian manifolds (Einstein, Sasakian, etc.)
58J60 Relations of PDEs with special manifold structures (Riemannian, Finsler, etc.)
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Aubin, T.: Equations différentielles non linéaires et problème de Yamabe concernant la courbure claire, J. Math. Pures et Appl.55, 269-296 (1976) · Zbl 0336.53033
[2] Aronszajn, N.: A unique continuation theorem for solutions of elliptic partial differential equations or inequalities of second order. J. Math. Pures Appl.35, 235-249 (1957) · Zbl 0084.30402
[3] Atiyah, M., Hitchin, N., Singer, I.M.: Self-duality in four-dimensional Riemannian geometry, Proc. R. Soc. London A362, 425-461 (1978) · Zbl 0389.53011 · doi:10.1098/rspa.1978.0143
[4] Berger, M.: Sur les variétés d’Einstein compactes, Comptes-Rendus IIIéme Réunion math. expression latine, Namur 35-55 (1965)
[5] Berger, M.: Quelques formules de variation pour une métrique riemannienne. Ann. Sci. E.N.S. Paris3, 285-294 (1970) · Zbl 0204.54802
[6] Bourguignon, J.-P.: Sur les formes harmoniques du type de la courbure. C. R. Acad. Sci. Paris286, 337-339 (1978) · Zbl 0374.53019
[7] Bourguignon, J.-P., Lawson, H.B.: Stability and isolation phenomena for Yang-Mills fields, à paraître dans Comm. Math. Phys. (1981) · Zbl 0475.53060
[8] Chern, S.S., Simons, J.: Some cohomology classes in principal fibre bundles and their applications to Riemannian geometry. Proc. Nat. Acad. Sci. U.S.A.68, 791-794 (1971) · Zbl 0209.25401 · doi:10.1073/pnas.68.4.791
[9] Derdzinski, A.: Classification of certain compact Riemannian manifolds with harmonic curvature and non-parallel Ricci tensor, Mat. Z.172, 273-280 (1980) · Zbl 0453.53037 · doi:10.1007/BF01215090
[10] Derdzinski, A.: Self-dual Kähler manifolds, conformal recurrence and special Einstein manifolds of dimension four, Preprint, Wroclaw University (Poland) · Zbl 0527.53030
[11] Friedrich, T., Kurke, H.: Compact four-dimensional self-dual Einstein manifolds with positive scalar curvature, à paraître dans Mathematische Nachrichten · Zbl 0503.53035
[12] Hirzebruch, F.: Topological methods in algebraic geometry, Berlin-Heidelberg-New York: Springer 1966 · Zbl 0138.42001
[13] Hitchin, N.: Kählerian twistor spaces, Preprint, Oxford (England)
[14] Kobayashi, S., Wu, H.H.: On holomorphic sections of certain hermitian vector bundles, Math. Ann.189, 1-4 (1970) · Zbl 0189.52201 · doi:10.1007/BF01350196
[15] Kulkarni, R.S.: Conformally flat manifolds, Proc. Nat. Acad. Sci. USA,69, 2675-2676 (1972) · Zbl 0238.53026 · doi:10.1073/pnas.69.9.2675
[16] Kulkarni, R.S.: On the Bianchi identities, Math. Ann.199, 175-204 (1972) · Zbl 0238.53013 · doi:10.1007/BF01429873
[17] Lichnerowicz, A.: Ondes et radiations électromagnétiques et gravitationnelles en relativité générale, Ann. di Mat. Pura ed Appl.50, 1-95 (1960) · Zbl 0098.19301 · doi:10.1007/BF02414504
[18] Lichnerowicz, A.: Géométrie des groupes de transformation, Paris: Dunod 1958
[19] Lichnerowicz, A.: Spineurs harmoniques, C. R. Acad. Sci. Paris257, 7-9 (1963) · Zbl 0136.18401
[20] Matsushima, Y.: Remarks on Kähler-Einstein manifolds, Nagoya Math. J.46, 161-173 (1972) · Zbl 0249.53050
[21] Nomizu, K.: On the decomposition of generalized curvature tensor fields, Differential Geometry in honor of K. Yano, Tokyo 335-345 (1972)
[22] Polombo, A.: Nombres caractéristiques d’une variété riemannienne, Thése de 3ème cycle, Université Paris VII 1976
[23] Polombo, A.: Nombres caractéristiques d’une surface kählérienne compacte, C. R. Acad. Sci. Paris283, 1025-1028 (1976) · Zbl 0339.53041
[24] Yau, S.T.: On Calabi’s conjecture and some new results in algebraic geometry, Proc. Nat. Acad. Sci. U.S.A.74, 1798-1799 (1977) · Zbl 0355.32028 · doi:10.1073/pnas.74.5.1798
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.