×

zbMATH — the first resource for mathematics

Arnold Shapiro’s eversion of the sphere. (English) Zbl 0456.57008

MSC:
57R42 Immersions in differential topology
01A25 History of mathematics in China
01A70 Biographies, obituaries, personalia, bibliographies
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] W. Boy, Über die Curvatura integra u. d. Topologie geschlossener Flächen, Inaugural-Dissertation, U. Göttingen, 1901. · JFM 32.0488.02
[2] W. Boy, Über die Curvatura integra und die Topologie geschlossener Flächen, Math. Ann. 57 (1903), p. 151–184. · JFM 34.0537.07 · doi:10.1007/BF01444342
[3] G. Francis, Some equivariant eversions of the sphere, privately circulated manuscript, July 1977.
[4] G. Francis, Drawing surfaces and their deformations: the tobaccopouch eversions of the sphere, to appear, Int. J. Math. Mod.
[5] N. Kuiper, Convex immersions of closed surfaces inE 3, Comm. Helv. 35 (1961), p. 85–92. · Zbl 0243.53043 · doi:10.1007/BF02567008
[6] N. Max, Turning a sphere inside out, Intern. Film Bureau, Chicago, 1977.
[7] B. Morin, Equations du retournement de la sphère, C. R. Acad. Sc. Paris, 287 (13 Novembre 1978), p. 879–882. · Zbl 0406.53001
[8] B. Morin and J. Petit, Problématique du retournement de la sphère, C. R. Acad. Sci. Paris, 287 (23 Octobre 1978), p. 767–770. · Zbl 0395.53025
[9] B. Morin and J. Petit, Le retournement de la sphère, C. R. Acad. Sci. Paris, 287 (30 Octobre 1978), p. 791–794. · Zbl 0407.53033
[10] B. Morin and J. Petit, Le retournement de la sphère, Pour la Science, 15 (Janvier 1979), p. 34–49. · Zbl 0407.53033
[11] A. Phillips, Turning a surface inside out, Sci. Amer. 214, 5 (1966), p. 112–120. · doi:10.1038/scientificamerican0566-112
[12] S. Smale, A classification of immersions of the two-sphere, Trans. Amer. Math. Soc. 90 (1959), p. 281–290. · Zbl 0089.18102 · doi:10.1090/S0002-9947-1959-0104227-9
[13] H. Whitney, On regular closed curves in the plane, Compositio Math. 4 (1937), p. 276–284. · JFM 63.0647.01
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.