Fiedler, Miroslav A deflation formula for tridiagonal matrices. (English) Zbl 0456.65018 Apl. Mat. 25, 348-357 (1980). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page MSC: 65F15 Numerical computation of eigenvalues and eigenvectors of matrices 15A18 Eigenvalues, singular values, and eigenvectors Keywords:deflation formula; tridiagonal matrices Citations:Zbl 0258.65037; Zbl 0226.65028; Zbl 0358.65033 PDF BibTeX XML Cite \textit{M. Fiedler}, Apl. Mat. 25, 348--357 (1980; Zbl 0456.65018) Full Text: EuDML OpenURL References: [1] J. H. Wilkinson: The algebraic eigenvalue problem. Clarendon Press, Oxford 1965. · Zbl 0258.65037 [2] P. A. Businger: Numerically stable deflation of Hessenberg and symmetric tridiagonal matrices. BIT 11 (1971), 262-270. · Zbl 0226.65028 [3] W. Gander: Stationärer Quotienten-Differenzen Algorithmus. Prozedur qdstat. Numerische Prozeduren aus Nachlass und Lehre von Prof. Heinz Rutishauser. ISNM Vol. 33. Birkhäuser Verlag 1977. · Zbl 0358.65033 [4] W. Jentzsch: Über Integralgleichungen mit positivem Kern. J. für Math. 141 (1912), 235 - 244. · JFM 43.0429.01 [5] M. Fiedler, Vl. Pták: On matrices with non-positive off-diagonal elements and positive principal minors. Czech. Math. J. 87 (1962), 382 - 400. · Zbl 0131.24806 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.