×

Estimation de l’erreur sur le coefficient de la singularite de la solution d’un problème elliptique sur un ouvert avec coin. (French) Zbl 0456.65062


MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
65N15 Error bounds for boundary value problems involving PDEs
PDFBibTeX XMLCite
Full Text: EuDML

References:

[1] 1. R. ADAMS, Sobolev Spaces, Academic Press, 1976. Zbl0314.46030 MR450957 · Zbl 0314.46030
[2] 2. H. D. BUI, Mécanique de la rupture fragile, Masson, Paris 1978.
[3] 3. P. G. CIARLET et P. A. RAVIART, Lagrange et Hermite Interpolation in \(R\), with Applications to Finite Element Methods, Arch. Rat. Mech. Anal, vol. 46, 1972, p. 177-199. Zbl0243.41004 MR336957 · Zbl 0243.41004 · doi:10.1007/BF00252458
[4] 4. M. DJAOUA, Équations intégrales pour un problème singulier dans le plan, Thèse de 3e cycle, Paris, 1977.
[5] 5. P. GRISVARD, Behaviour of the Solutions of an Elliptic Boundary Value Problem in a Polynomial or Polyhedral domain in Numerical Solution of Partial Differential Equations III, Synspade, 1975, BERT HUBBARD, éd.> Academic Press. Zbl0361.35022 · Zbl 0361.35022
[6] 6. A. M. SCHATZ et L. B. WAHLBIN, Maximum Norm Estimates in the Finite Element Method on Plane Polygonal Domains, ath. Comp., vol. 32, n^\circ 141, 1978, p. 73-209. Zbl0382.65058 MR502065 · Zbl 0382.65058 · doi:10.2307/2006259
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.