Morita, Yasuo A p-adic theory of hyperfunctions. I. (English) Zbl 0457.12010 Publ. Res. Inst. Math. Sci. 17, 1-24 (1981). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 1 ReviewCited in 7 Documents MSC: 12J25 Non-Archimedean valued fields 46F15 Hyperfunctions, analytic functionals 11S80 Other analytic theory (analogues of beta and gamma functions, \(p\)-adic integration, etc.) 46S10 Functional analysis over fields other than \(\mathbb{R}\) or \(\mathbb{C}\) or the quaternions; non-Archimedean functional analysis 11S40 Zeta functions and \(L\)-functions Keywords:p-adic hyperfunctions; non archimedean valuated field; integral representation of p-adic L-function × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Amice, Y. and Fresnel, J., Fonctions z£ta />-adiques des corps de nombres ab£liens, rSele, Acta Arith., 20 (1972), 353-384. · Zbl 0217.04303 [2] Barsky, D., Mesures p-adiques et SUments analytiques, SSmin. Thtor. Nombres 1973-1974, Univ. Bordeaux, Expose” 6, 1974. · Zbl 0318.28004 [3] Bourbaki, N., Espaces vectoriels topologiques, Chap. I, II, Hermann, Paris, 1953. · Zbl 0042.35302 · doi:10.5802/aif.16 [4] Bourbaki, N., Espaces vectories topologiques, Chap. Ill, IV, V, Hermann, Paris, 1955. [5] Iwasawa, K., Lecture on p-adic L-functions, Annals of Math. Studies, 74, Princeton U. P., Princeton, 1972. · Zbl 0236.12001 [6] Kothe, G., Dualitat in der Funktionentheorie, J. reine u. angew. Math., 191 (1953), 30-49. f 7 ] Komatsu, H>, Projective and injective limits of weakly compact sequences of locally convex spaces, /. Math. Soc. Japan, 19 (1967), 366-383. [7] 9 Introduction to the theory of Sato’s hyperfunctions, RIMS Kokyuroku, 188, Kyoto Univ., Kyoto, 1973 (in Japanese). [8] Krasner, M., Rapport sur le prolongement analytique dans le corps values complets par la methode des elements analytiques quasi-connexes, Bull. Soc. Math. France, Memoire, 39-40 (1974), 131-254. · Zbl 0295.12104 [9] Kubota, T. and Leopoldt, H. W., Eine p-adische Theorie der Zetawerte, I, J. reine u. angew. Math., 214/215 (1964), 328-339. [10] Mazur, B. and Swinnerton-Dyer, P., Arithmetic of Weil curves, Inventiones Math., 25 (1974), 1-61. · Zbl 0281.14016 · doi:10.1007/BF01389997 [11] Monna, A. F., Analyse non-archimedienne, Springer-Verlag, Berlin-Heidelberg- New York, 1970. ●’ · Zbl 0203.11501 [12] Morita, Y., A p-adic analogue of the /’-function, J. Fac. Sci. Univ. Tokyo, Sec. I A, 22 (1975), 255-266. · Zbl 0308.12003 [13] , On the Hurwitz-Lerch £-functions, ibid., 24 (1977), 29-43. [14] , Examples of p-adic arithmetic functions, in Algebraic Number Theory, 143-148, Kyoto: Japan Society for the Promotion of Science, Tokyo, 1977. [15] , A p-adic integral representation of the p-adic L-i unction, /. reine u. angew. Math., 302 (1978), 71-95. - [16] f On Krasner’s analytic functions, to appear.(2) [17] Robba, P., Fonctions analytiques sur les corps values ultrametriques complets, I, Aste’risque, 10 (1973), 109-218. · Zbl 0289.12110 [18] Sato, M., Theory of hyperfunctions, I, <7. Fac. Sci. Univ. Tokyo, Sec. I A, 8 (1959), 139-193. · Zbl 0087.31402 [19] , Theory of hyperfunctions, II, ibid., 8 (1960), 387-437. · Zbl 0097.31404 [20] Sato, M., Kawai, T. and Kashiwara, M., Microfunctions and pseudo-differential equations, Lecture Note in Math., 287, 1973, 265-529. · Zbl 0277.46039 [21] Schwartz, L., Theorie des distributions, Hermann, Paris, 1950-1951. · Zbl 0037.07301 [22] Springer, T. A., Une notion de compacite dans la theorie des espaces vectoriels topologiques, Proc. Kon. Ned. Akad. v. Wet., A68 (1965), 182-189. · Zbl 0128.34002 [23] Tate, J., Rigid analytic spaces, Inventiones Math., 12 (19.71), 257-289. . · Zbl 0212.25601 · doi:10.1007/BF01403307 [24] Tiel, J. van, Espaces localement £”-convexes, Proc Kon. Ned. Akad. v. Wet., A68 (1965), 249-289. · Zbl 0133.06502 [25] , Ensembles pseudo-polaires dans les espaces localement X-convexes, ibid., A69 (1966), 369-373. · Zbl 0137.09501 [26] Volkenborn, A., On generalized p-adic integration, Bull. Soc. Math. France, Me”moire 39-40 (1974), 375-384. (2) After writing the present paper, the author” proved that the Krasner theory and the Tate theory give the same results if the field k is maximally complete and the domain D is a completely regular quasi-connected set. Furthermore, he proved that we can obtain the results of Section 1 without assuming that k is maximally complete if we use the Tate theory instead of the Krasner theory. Hence [17] will not appear. For the references and the details, see Morita,. Y., Analytic functions on an open subset of P*<*), /. reine u. angew. Math., 311/312 (1979), 361-383. This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.