×

zbMATH — the first resource for mathematics

Analytic Moufang loops in the large. (English. Russian original) Zbl 0457.22002
Algebra Logic 18, 325-347 (1980); translation from Algebra Logika 18, 523-555 (1979).

MSC:
22A30 Other topological algebraic systems and their representations
22E05 Local Lie groups
17D10 Mal’tsev rings and algebras
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] A. I. Mal’tsev, ”Analytic loops,” Mat. Sb.,36, No. 3, 569–576 (1955). · Zbl 0065.00702
[2] A. I. Mal’tsev, ”On the general theory of algebraic systems,” Mat. Sb.,35, No. 1, 3–20 (1954).
[3] E. N. Kuz’min, ”On the connection between Mal’tsev algebras and analytic Moufang loops,” Algebra Logika,10, No. 1, 3–22 (1971).
[4] E. N. Kuz’min, ”Mal’tsev algebras and their representations,” Algebra Logika,7, No. 4, 48–69 (1968).
[5] E. N. Kuz’min, ”The Levi theorem for Mal’tsev algebras,” Algebra Logika,16, No. 4, 424–431 (1977).
[6] A. N. Grishkov, ”Analog of Levi’s theorem for Mal’tsev algebras,” Algebra Logika,16, No. 4, 389–396 (1977).
[7] A. A. Albert, ”Quasigroups. II,” Trans. Am. Math. Soc.,55, No. 3, 401–419 (1944). · Zbl 0063.00042
[8] R. Bruck, A Survey of Binary Systems, Springer-Verlag, Berlin–Heidelberg–Göttingen (1958). · Zbl 0081.01704
[9] K. A. Zhevlakov, A. M. Slin’ko, I. P. Shestakov, and A. I. Shirshov, Near-Associative Rings [in Russian], Nauka, Moscow (1978).
[10] L. S. Pontryagin, Continuous Groups [in Russian], Nauka, Moscow (1973).
[11] V. D. Belousov, Foundations of the Theory of Quasigroups and Loops [in Russian], Nauka, Moscow (1967). · Zbl 0229.20075
[12] M. A. Naimark, Theory of Group Representations [in Russian], Nauka, Moscow (1976).
[13] Dniester Notebook [in Russian], Novosibirsk (1976).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.