×

zbMATH — the first resource for mathematics

Lucas pseudoprimes. (English) Zbl 0458.10003

MSC:
11A15 Power residues, reciprocity
11A41 Primes
11B39 Fibonacci and Lucas numbers and polynomials and generalizations
11-04 Software, source code, etc. for problems pertaining to number theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] John Brillhart, D. H. Lehmer, and J. L. Selfridge, New primality criteria and factorizations of 2^\?\pm 1, Math. Comp. 29 (1975), 620 – 647. · Zbl 0311.10009
[2] N. G. DE BRUIJN, ”On the number of positive integers \( \leqslant x\) and free of prime factors \( > y\),” Indag. Math., v. 13, 1951, pp. 50-60. MR 13, 724. · Zbl 0042.04204
[3] D. A. Burgess, On character sums and \?-series, Proc. London Math. Soc. (3) 12 (1962), 193 – 206. · Zbl 0106.04004 · doi:10.1112/plms/s3-12.1.193 · doi.org
[4] P. D. T. A. Elliott, A conjecture of Erdős concerning character sums, Nederl. Akad. Wetensch. Proc. Ser. A 72=Indag. Math. 31 (1969), 164 – 171. · Zbl 0188.33905
[5] P. D. T. A. Elliott, On the mean value of \?(\?), Proc. London Math. Soc. (3) 21 (1970), 28 – 96. · Zbl 0218.10059 · doi:10.1112/plms/s3-21.1.28 · doi.org
[6] P. Erdös and M. Kac, The Gaussian law of errors in the theory of additive number theoretic functions, Amer. J. Math. 62 (1940), 738 – 742. · JFM 66.0172.02 · doi:10.2307/2371483 · doi.org
[7] P. Erdös, On pseudoprimes and Carmichael numbers, Publ. Math. Debrecen 4 (1956), 201 – 206. · Zbl 0074.27105
[8] Pál Erdős, Remarks on number theory. I, Mat. Lapok 12 (1961), 10 – 17 (Hungarian, with Russian and English summaries). · Zbl 0154.29403
[9] G. H. HARDY & E. M. WRIGHT, An Introduction to the Theory of Numbers, 4th ed., Oxford Univ. Press, London, 1959. · Zbl 0020.29201
[10] D. H. Lehmer, An extended theory of Lucas’ functions, Ann. of Math. (2) 31 (1930), no. 3, 419 – 448. · JFM 56.0874.04 · doi:10.2307/1968235 · doi.org
[11] EMMA LEHMER, ”On the infinitude of Fibonacci pseudo-primes,” Fibonacci Quart., v. 2, 1964, pp. 229-230. · Zbl 0119.27906
[12] Edouard Lucas, Theorie des Fonctions Numeriques Simplement Periodiques, Amer. J. Math. 1 (1878), no. 4, 289 – 321 (French). · JFM 10.0134.05 · doi:10.2307/2369373 · doi.org
[13] D. E. G. MALM, ”On Monte-Carlo primality tests,” Notices Amer. Math. Soc., v. 24, 1977, p. A-529. Abstract #77T-A22.
[14] Gary L. Miller, Riemann’s hypothesis and tests for primality, J. Comput. System Sci. 13 (1976), no. 3, 300 – 317. Working papers presented at the ACM-SIGACT Symposium on the Theory of Computing (Albuquerque, N.M., 1975). , https://doi.org/10.1016/S0022-0000(76)80043-8 Gary L. Miller, Riemann’s hypothesis and tests for primality, Seventh Annual ACM Symposium on Theory of Computing (Albuquerque, N.M., 1975), Assoc. Comput. Mach., New York, 1975, pp. 234 – 239. · Zbl 0349.68025
[15] Ivan Niven and Herbert S. Zuckerman, An introduction to the theory of numbers, 3rd ed., John Wiley & Sons, Inc., New York-London-Sydney, 1972. · Zbl 0237.10001
[16] Edward A. Parberry, On primes and pseudo-primes related to the Fibonacci sequence, Fibonacci Quart. 8 (1970), no. 1, 49 – 60. · Zbl 0208.05303
[17] Carl Pomerance, J. L. Selfridge, and Samuel S. Wagstaff Jr., The pseudoprimes to 25\cdot 10\(^{9}\), Math. Comp. 35 (1980), no. 151, 1003 – 1026. · Zbl 0444.10007
[18] A. Rotkiewicz, On the pseudoprimes with respect to the Lucas sequences, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 21 (1973), 793 – 797 (English, with Russian summary). · Zbl 0267.10008
[19] K. Szymiczek, On pseudoprimes which are products of distinct primes, Amer. Math. Monthly 74 (1967), no. 1, 35 – 37. · Zbl 0146.26803 · doi:10.2307/2314051 · doi.org
[20] H. C. Williams and J. S. Judd, Determination of the primality of \? by using factors of \?²\pm 1, Math. Comp. 30 (1976), no. 133, 157 – 172. · Zbl 0322.10007
[21] H. C. Williams and J. S. Judd, Some algorithms for prime testing using generalized Lehmer functions, Math. Comp. 30 (1976), no. 136, 867 – 886. · Zbl 0342.10007
[22] H. C. Williams, On numbers analogous to the Carmichael numbers, Canad. Math. Bull. 20 (1977), no. 1, 133 – 143. · Zbl 0368.10011 · doi:10.4153/CMB-1977-025-9 · doi.org
[23] H. C. Williams and R. Holte, Some observations on primality testing, Math. Comp. 32 (1978), no. 143, 905 – 917. · Zbl 0382.10005
[24] Masataka Yorinaga, A technique of numerical production of a sequence of pseudo-prime numbers, Math. J. Okayama Univ. 19 (1976/77), no. 1, 1 – 4. · Zbl 0351.10001
[25] Masataka Yorinaga, On a congruencial property of Fibonacci numbers – numerical experiments, Math. J. Okayama Univ. 19 (1976/77), no. 1, 5 – 10. · Zbl 0351.10008
[26] Masataka Yorinaga, On a congruencial property of Fibonacci numbers – considerations and remarks, Math. J. Okayama Univ. 19 (1976/77), no. 1, 11 – 17. · Zbl 0351.10009
[27] A. Rotkiewicz, On Lucas numbers with two intrinsic prime divisors, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 10 (1962), 229 – 232. · Zbl 0136.32503
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.