×

zbMATH — the first resource for mathematics

Flat and projective character modules. (English) Zbl 0458.16014

MSC:
16D40 Free, projective, and flat modules and ideals in associative algebras
16D50 Injective modules, self-injective associative rings
PDF BibTeX Cite
Full Text: DOI
References:
[1] Jan-Erik Björk, Rings satisfying a minimum condition on principal ideals, J. Reine Angew. Math. 236 (1969), 112 – 119. · Zbl 0175.03203
[2] Stephen U. Chase, Direct products of modules, Trans. Amer. Math. Soc. 97 (1960), 457 – 473. · Zbl 0100.26602
[3] T. J. Cheatham and J. R. Smith, Regular and semisimple modules, Pacific J. Math. 65 (1976), no. 2, 315 – 323. · Zbl 0326.16011
[4] R. R. Colby, Rings which have flat injective modules, J. Algebra 35 (1975), 239 – 252. · Zbl 0306.16015
[5] E. Enochs, A note on semihereditary rings, Canad. Math. Bull. 16 (1973), 439 – 440. · Zbl 0274.16013
[6] J. Lambek, A module is flat if and only if its character module is injective, Canad. Math. Bull. 7 (1964), 237 – 243. · Zbl 0119.27601
[7] Charles Megibben, Absolutely pure modules, Proc. Amer. Math. Soc. 26 (1970), 561 – 566. · Zbl 0216.33803
[8] V. S. Ramamurthi, On modules with projective character modules, Math. Japon. 23 (1978/79), no. 2, 181 – 184. · Zbl 0412.16015
[9] Bo Stenström, Rings of quotients, Springer-Verlag, New York-Heidelberg, 1975. Die Grundlehren der Mathematischen Wissenschaften, Band 217; An introduction to methods of ring theory. · Zbl 0296.16001
[10] Tilmann Würfel, Über absolut reine Ringe, J. Reine Angew. Math. 262/263 (1973), 381 – 391 (German). Collection of articles dedicated to Helmut Hasse on his seventy-fifth birthday. · Zbl 0265.16011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.