zbMATH — the first resource for mathematics

A zero-entropy mixing transformation whose product with itself is loosely Bernoulli. (English) Zbl 0458.28015

28D05 Measure-preserving transformations
Full Text: DOI
[1] R. V. Chacon,Transformations with continuous spectrum, J. Math. Mech.16 (1966), 399–415. · Zbl 0154.30602
[2] J. Feldman,New K-automorphisms and a problem of Kakutani, Israel J. Math.24 (1976), 16–38. · Zbl 0336.28003 · doi:10.1007/BF02761426
[3] N. Friedman,Introduction to Ergodic Theory, Van Nostrand, 1970.
[4] A. Katok,Time change, monotone equivalent and standard dynamical systems Soviet Math. Dokl.16 (1975), 986–990. · Zbl 0326.28025
[5] A. Katok,Monotone equivalence in ergodic theory, Math. USSR-Izv.11 (1977), 99–146. · Zbl 0379.28008 · doi:10.1070/IM1977v011n01ABEH001696
[6] A. Katok and E. Sataev,Standardness of automorphisms of transpositions of intervals and fluxes on surfaces, Math. Notes20 (1976), 826–830. · Zbl 0368.58010
[7] D. Lind,The isomorphism theorem for multidimensional Bernoulli flows, preprint, to appear in Israel J. Math.
[8] D. Ornstein,Ergodic Theory, Randomness and Dynamical Systems, Yale University Press, 1974.
[9] M. Ratner,Horocycle flows are loosely Bernoulli, Israel J. Math.31 (1978), 122–132. · Zbl 0417.58013 · doi:10.1007/BF02760543
[10] M. Ratner,The Cartesian square of the horocycle flow is not loosely Bernoulli, Israel J. Math.34 (1979), 72–96. · Zbl 0437.28010 · doi:10.1007/BF02761825
[11] A. Rothstein,Versik processes: first steps, Ph.D. thesis, University of Chicago, 1979. · Zbl 0461.60054
[12] D. Rudolph,Non-equivalence of measure preserving transformations, Lecture Notes, The Institute for Advanced Studies, The Hebrew University of Jerusalem, 1976.
[13] E. Sataev,An invariant of monotone equivalence determining the quotient of automorphisms monotonely equivalent to a Bernoulli shift, Math. USSR-Izv.11 (1977), 147–169. · Zbl 0389.28008 · doi:10.1070/IM1977v011n01ABEH001697
[14] L. Swanson,Loosely Bernoulli Cartesian products, Proc. Amer. Math. Soc.73 (1979), 73–78. · Zbl 0368.28018 · doi:10.1090/S0002-9939-1979-0512061-9
[15] L. Swanson,An automorphism all of whose n-fold Cartesian products are loosely Bernoulli, Preliminary Report, Amer. Math. Soc.26 (1979), A-133. · Zbl 0368.28018
[16] B. Weiss,Equivalence of measure preserving transformations, Lecture Notes, The Institute for Advanced Studies, The Hebrew University of Jerusalem, 1976.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.