×

zbMATH — the first resource for mathematics

Semi-polar sets and quasi-balayage. (English) Zbl 0458.31008

MSC:
31D05 Axiomatic potential theory
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Bauermann, U. Balayage-Operatoren in der Potentialtheorie. Math. Ann.231, 181-186 (1977) · Zbl 0356.31008
[2] Bliedtner, J., Hansen, W.: Simplicial cones in potential theory Inventiones math.29, 83-110 (1975) · Zbl 0308.31011
[3] Bliedtner, J., Hansen, W.: Markov processes and harmonic spaces. Z. Wahrscheinlichkeitstheorie verw. Gebiete42, 309-325 (1978). · Zbl 0366.60104
[4] Bliedtner, J., Hansen, W.: Bases in standard balayage spaces. Potential theory Copenhagen 1979, 55-63. In: Lecture Notes in Mathematics, Vol. 787. Berlin, Heidelberg, New York: Springer 1980
[5] Constantinescu, C., Cornea, A.: Potential theory on harmonic spaces. Berlin, Heidelberg, New York: Springer 1972 · Zbl 0248.31011
[6] Dellacherie, C.: Ensembles aléatoires. I. Séminaire de Probabilités III, 97-114. In: Lecture Notes in Mathematics, Vol. 88. Berlin, Heidelberg, New York: Springer 1969
[7] Dellacherie, C.: Ensembles aléatoires. II. Séminaire de Probabilités III, 115-136. In: Lecture Notes in Mathematics, Vol. 88. Berlin, Heidelberg, New York: Springer 1969
[8] Dellacherie, C.: Capacités et processus stochastiques. Berlin, Heidelberg, New York: Springer 1972 · Zbl 0246.60032
[9] Dellacherie, C.: Une conjecture sur les ensembles semi-polaires. Séminaire de Probabilités VII, 51-57. In: Lecture Notes in Mathematics, Vol. 321. Berlin, Heidelberg, New York: Springer 1973
[10] Dellacherie, C.: Appendice à l’exposé de Mokobodzki. Séminaire de Probabilités XII, 509-511. In: Lecture Notes in Mathematics, Vol. 649. Berlin, Heidelberg, New York. Springer 1978
[11] Dellacherie, C.: Capacités, rabotages et ensembles analytiques (preprint) · Zbl 0504.28002
[12] Hansen, W.: Some remarks on strict potentials. Math. Z.147 279-285 (1976) · Zbl 0313.31021
[13] Hansen, W.: Semi-polar sets are almost negligible. J. Reine Angew. Math.314, 217-220 (1980) · Zbl 0422.31009
[14] Hansen, W.: Markov processes on standard balayage spaces. (unpublished)
[15] Lindenstrauss, J.: A short proof of Liapunoffs convexity theorem. J. Math. Mech.15, 971-972 (1966) · Zbl 0152.24403
[16] Mokobodzki, G.: Ensembles à coupes dénombrales et capacités dominées par une mesure. Séminaire de Probabilités XII, 491-508. In: Lecture Notes in Mathematics, Vol. 649. Berlin, Heidelberg, New York: Springer 1978
[17] Stroock, D.: The Kac approach to potential theory. J. Math. Mech.16, 829-852 (1967) · Zbl 0148.36202
[18] Walsh, J. B.: Some topologies connected with Lebesgue measure. Séminaire de Probabilités V, 290-310. In: Lecture Notes in Mathematics, Vol. 191. Berlin, Heidelberg, New York: Springer 1971
[19] Wittmann, R.: Kacsche Potentialtheorie für Resolventen, Markoffsche Prozesse und harmonische Räume. Thesis, Erlangen 1981 · Zbl 0488.31007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.