×

Approximation of the spectrum of closed operators: The determination of normal modes of a rotating basin. (English) Zbl 0458.65084


MSC:

65N25 Numerical methods for eigenvalue problems for boundary value problems involving PDEs
47A10 Spectrum, resolvent
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65J10 Numerical solutions to equations with linear operators
76B10 Jets and cavities, cavitation, free-streamline theory, water-entry problems, airfoil and hydrofoil theory, sloshing
47F05 General theory of partial differential operators
35P05 General topics in linear spectral theory for PDEs
35P15 Estimates of eigenvalues in context of PDEs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] J. H. Bramble and J. E. Osborn, Rate of convergence estimates for nonselfadjoint eigenvalue approximations, Math. Comp. 27 (1973), 525 – 549. · Zbl 0305.65064
[2] Philippe G. Ciarlet, The finite element method for elliptic problems, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. Studies in Mathematics and its Applications, Vol. 4. · Zbl 0383.65058
[3] Jean Descloux, Error bounds for an isolated eigenvalue obtained by the Galerkin method, Z. Angew. Math. Phys. 30 (1979), no. 2, 167 – 176 (English, with German summary). · Zbl 0397.65039 · doi:10.1007/BF01601931
[4] Jean Descloux, Nabil Nassif, and Jacques Rappaz, On spectral approximation. I. The problem of convergence, RAIRO Anal. Numér. 12 (1978), no. 2, 97 – 112, iii (English, with French summary). Jean Descloux, Nabil Nassif, and Jacques Rappaz, On spectral approximation. II. Error estimates for the Galerkin method, RAIRO Anal. Numér. 12 (1978), no. 2, 113 – 119, iii (English, with French summary). · Zbl 0393.65024
[5] Jean Descloux, Nabil Nassif, and Jacques Rappaz, On spectral approximation. I. The problem of convergence, RAIRO Anal. Numér. 12 (1978), no. 2, 97 – 112, iii (English, with French summary). Jean Descloux, Nabil Nassif, and Jacques Rappaz, On spectral approximation. II. Error estimates for the Galerkin method, RAIRO Anal. Numér. 12 (1978), no. 2, 113 – 119, iii (English, with French summary). · Zbl 0393.65024
[6] Tosio Kato, Perturbation theory for linear operators, Die Grundlehren der mathematischen Wissenschaften, Band 132, Springer-Verlag New York, Inc., New York, 1966. · Zbl 0148.12601
[7] Tosio Kato, Perturbation theory for nullity, deficiency and other quantities of linear operators, J. Analyse Math. 6 (1958), 261 – 322. · Zbl 0090.09003 · doi:10.1007/BF02790238
[8] Horace Lamb, Hydrodynamics, 6th ed., Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1993. With a foreword by R. A. Caflisch [Russel E. Caflisch]. · Zbl 0828.01012
[9] P. D. Lax and R. S. Phillips, Local boundary conditions for dissipative symmetric linear differential operators, Comm. Pure Appl. Math. 13 (1960), 427 – 455. · Zbl 0094.07502 · doi:10.1002/cpa.3160130307
[10] J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications. Vol. 1, Travaux et Recherches Mathématiques, No. 17, Dunod, Paris, 1968 (French). · Zbl 0212.43801
[11] Mitchell Luskin, Convergence of a finite element method for the approximation of normal modes of the oceans, Math. Comp. 33 (1979), no. 146, 493 – 519. · Zbl 0431.65066
[12] Wendell H. Mills Jr., The resolvent stability condition for spectra convergence with application to the finite element approximation of noncompact operators, SIAM J. Numer. Anal. 16 (1979), no. 4, 695 – 703. · Zbl 0419.65066 · doi:10.1137/0716052
[13] Wendell H. Mills Jr., Optimal error estimates for the finite element spectral approximation of noncompact operators, SIAM J. Numer. Anal. 16 (1979), no. 4, 704 – 718. · Zbl 0419.65067 · doi:10.1137/0716053
[14] John E. Osborn, Spectral approximation for compact operators, Math. Comput. 29 (1975), 712 – 725. · Zbl 0315.35068
[15] G. W. Platzman, ”Normal modes of the Atlantic and Indian Oceans,” J. Phys. Oceanography, v. 5, 1975, pp. 201-221.
[16] Frigyes Riesz and Béla Sz.-Nagy, Functional analysis, Frederick Ungar Publishing Co., New York, 1955. Translated by Leo F. Boron. · Zbl 0070.10902
[17] J. H. Wilkinson, The algebraic eigenvalue problem, Clarendon Press, Oxford, 1965. · Zbl 0258.65037
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.