×

Minimizing a differentiable function over a differential manifold. (English) Zbl 0458.90060


MSC:

90C30 Nonlinear programming
90C52 Methods of reduced gradient type
53C20 Global Riemannian geometry, including pinching
53C22 Geodesics in global differential geometry
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Gabay, D., andLuenberger, D. G.,Efficiently Converging Minimization Methods Based on the Reduced Gradient, SIAM Journal on Control and Optimization, Vol. 14, pp. 42-61, 1976. · Zbl 0342.90043
[2] Luenberger, D. G.,The Gradient Projection Method along Geodesics, Management Science, Vol. 18, pp. 620-631, 1972. · Zbl 0253.90050
[3] Rosen, J. B.,The Gradient Projection Method for Nonlinear Programming: Part II, Nonlinear Constraints, SIAM Journal on Applied Mathematics, Vol. 9, pp. 514-522, 1961. · Zbl 0231.90048
[4] Lichnewsky, A.,Minimisation de Fonctionnelles Définies sur une Variété par la Méthode du Gradient Conjugué, Thèse de Doctorat d’Etat, Université de Paris-Sud, Paris, France, 1979.
[5] Abadie, J., andGuigou, J.,Numerical Experiments with the GRG Method, Integer and Nonlinear Programming, Edited by J. Abadie, North-Holland Publishing Company, Amsterdam, Holland, pp. 529-536, 1970.
[6] Miele, A., Huang, H. Y., andHeideman, J. C.,Sequential Gradient-Restoration Algorithm for the Minimization of Constrained Functions, Ordinary and Conjugate Gradient Versions, Journal of Optimization Theory and Applications, Vol. 4, pp. 213-243, 1969. · Zbl 0174.14403
[7] Milnor, J. W.,Topology from the Differential Viewpoint, University Press of Virginia, Charlottesville, Virginia, 1965. · Zbl 0136.20402
[8] Stewart, G. W.,Introduction to Matrix Computations, Academic Press, New York, New York, 1973. · Zbl 0302.65021
[9] Guillemin, V., andPollack, A.,Differential Topology, Prentice-Hall, Englewood Cliffs, New Jersey, 1974.
[10] Milnor, J. W.,Morse Theory, Princeton University Press, Princeton, New Jersey, 1969.
[11] Hicks, N. J.,Notes on Differential Geometry, Van Nostrand Publishing Company, Princeton, New Jersey, 1965. · Zbl 0132.15104
[12] Bishop, R. L., andCrittenden, R. J.,Geometry of Manifolds, Academic Press, New York, New York, 1964. · Zbl 0132.16003
[13] Luenberger, D. G.,Introduction to Linear and Nonlinear Programming, Addison-Wesley Publishing Company, Reading, Massachusetts, 1973. · Zbl 0297.90044
[14] Hirsch, M. W.,Differential Topology, Springer, New York, New York, 1976.
[15] Golubitsky, M., andGuillemin, V.,Stable Mapping and Their Singularities, Springer, New York, New York, 1973. · Zbl 0294.58004
[16] Hestenes, M. R.,Optimization Theory, The Finite Dimensional Case, John Wiley and Sons, New York, New York, 1975. · Zbl 0327.90015
[17] Polak, E.,Computational Methods in Optimization, A Unified Approach, Academic Press, New York, New York, 1971. · Zbl 0257.90055
[18] Ortega, J. M., andRheinboldt, N. C.,Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, New York, New York, 1970. · Zbl 0241.65046
[19] McCormick, G. P.,A Modification of Armijo’s Stepsize Rule for Negative Curvature, Mathematical Programming, Vol. 13, pp. 111-115, 1977. · Zbl 0367.90100
[20] Moré, J. J., andSorensen, D. C.,On the Use of Directions of Negative Curvature in a Modified Newton Method, Mathematical Programming, Vol. 16, pp. 1-20, 1979. · Zbl 0394.90093
[21] Dennis, J. E., andMoré, J. J.,Quasi-Newton Methods, Motivation and Theory, SIAM Review, Vol. 19, pp. 46-89, 1977. · Zbl 0356.65041
[22] Powell, M. J. D.,Some Global Convergence Properties of a Variable Metric Algorithm for Minimization without Exact Line Searches, Paper Presented at the AMS/SIAM Symposium on Nonlinear Programming, New York, New York, 1976. · Zbl 0338.65038
[23] Dennis, J. E., andMoré, J. J.,A Characterization of Superlinear Convergence and Its Application to Quasi-Newton Methods, Mathematics of Computation, Vol. 28, pp. 549-560, 1974. · Zbl 0282.65042
[24] Gabay, D.,Efficient Convergence of Implementable Gradient Algorithms and Stepsize Selection Procedures for Constrained Minimization, International Computing Symposium 1975, Edited by E. Gelenbe and D. Potier, North-Holland Publishing Company, Amsterdam, Holland, pp. 37-43, 1975. · Zbl 0344.65037
[25] Gill, P. E., andMurray, W.,Quasi-Newton Methods for Unconstrained Optimization, Journal of the Institute of Mathematics and Applications, Vol. 9, pp. 91-108, 1972. · Zbl 0264.49026
[26] Gill, P. E., andMurray, W.,Quasi-Newton Methods for Linearly Constrained Optimization, Numerical Methods for Constrained Optimization, Edited by P. E. Gill and W. Murray, Academic Press, New York, London, 1974. · Zbl 0297.90082
[27] Goldfarb, D.,Extension of Davidon’s Variable Metric Method to Maximization under Linear Inequality and Equality Constraints, SIAM Journal on Applied Mathematics, Vol. 17, pp. 739-764, 1969. · Zbl 0185.42602
[28] Mukai, H., andPolak, E.,On the Use of Approximations in Algorithms for Optimization Problems with Equality and Inequality Constraints, SIAM Journal on Numerical Analysis, Vol. 13, pp. 674-693, 1978. · Zbl 0392.49017
[29] Tanabe, K.,A Geometric Method in Nonlinear Programming, Journal of Optimization Theory and Applications, Vol. 30, pp. 181-210, 1980. · Zbl 0396.90078
[30] Tanabe, K.,Differential Geometry Approach to Extended GRG Methods with Enforced Feasibility in Nonlinear Programming: Global Analysis, Recent Applications of Generalized Inverses, Edited by M. Z. Nashed, Pitman, London (to appear). · Zbl 0507.90079
[31] Gabay, D.,Reduced Quasi-Newton Methods with Feasibility Improvement for Nonlinearly Constrained Optimization, Mathematical Programming Studies (to appear). · Zbl 0477.90065
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.