×

zbMATH — the first resource for mathematics

Levi flat hypersurfaces which are not holomorphically flat. (English) Zbl 0459.32007

MSC:
32V40 Real submanifolds in complex manifolds
32T99 Pseudoconvex domains
57R30 Foliations in differential topology; geometric theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] S. S. Chern and J. K. Moser, Real hypersurfaces in complex manifolds, Acta Math. 133 (1974), 219 – 271. · Zbl 0302.32015 · doi:10.1007/BF02392146 · doi.org
[2] James J. Faran V, Non-analytic hypersurfaces in \?\(^{n}\), Math. Ann. 226 (1977), no. 2, 121 – 123. · Zbl 0329.32005 · doi:10.1007/BF01360863 · doi.org
[3] Charles Fefferman, The Bergman kernel and biholomorphic mappings of pseudoconvex domains, Invent. Math. 26 (1974), 1 – 65. · Zbl 0289.32012 · doi:10.1007/BF01406845 · doi.org
[4] G. M. Henkin, An analytic polyhedron is not holomorphically equivalent to a strictly pseudoconvex domain, Dokl. Akad. Nauk SSSR 210 (1973), 1026 – 1029 (Russian). · Zbl 0288.32015
[5] S. I. Pinčuk, Biholomorphic inequivalence of bounded domains with smooth and piecewise-smooth boundaries, Dokl. Akad. Nauk SSSR 247 (1979), no. 3, 554 – 557 (Russian).
[6] C. Rea, Levi-flat submanifolds and holomorphic extension of foliations, Ann. Scuola Norm. Sup. Pisa (3) 26 (1972), 665 – 681. · Zbl 0272.57013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.