Some estimates for type and cotype constants. (English) Zbl 0459.46011


46B20 Geometry and structure of normed linear spaces
47B10 Linear operators belonging to operator ideals (nuclear, \(p\)-summing, in the Schatten-von Neumann classes, etc.)
Full Text: DOI EuDML


[1] Bergh, J., Löfström, J.: Interpolation spaces, an introduction. Berlin, Heidelberg, New York: Springer 1976 · Zbl 0344.46071
[2] Figiel, T., Lindenstrauss, J., Milman, V.D.: The dimension of almost spherical sections of convex bodies. Acta Math.139, 53-94 (1977) · Zbl 0375.52002
[3] Garling, D.J.H., Gordon, Y.: Relations between some constants associated with finite dimensional Banach spaces. Israel J. Math.9, 346-361 (1971) · Zbl 0212.14203
[4] Haagerup, U.: Les meilleures constantes de l’inegalite de Khintchine. C.R. Acad. Sci. Paris286 259-262 (1978) · Zbl 0377.46013
[5] König, H.: Type constants and (q, 2)-summing norms defined byn vectors. Israel J. Math.37, 130-138 (1980) · Zbl 0449.47037
[6] König, H., Retherford, J.R., Tomczak-Jaegermann, N.: Eigenvalues of (p, 2)-summing operators and constants associated with normed spaces. J. Funct. Anal.37, 88-126 (1980) · Zbl 0434.47033
[7] Lindenstrauss, J., Tzafriri, L.: Classical Banach spaces. II. Function spaces. Ergebnisse der Mathematik, Vol. 92. Berlin, Heidelberg, New York: Springer 1979 · Zbl 0403.46022
[8] Maurey, B.: Une nouvelle caracterisation des applications (p, q)-sommantes. Seminaire Maurey-Schwartz 1973-74, Expose XII
[9] Maurey, B., Pisier, G.: Series de variables aleatoires vectoriolles independantes et proprietes geometriques des espaces de Banach. Studia Math.58, 45-90 (1976) · Zbl 0344.47014
[10] Pisier, G.: Types des espaces normes. C. R. Acad. Sci. Paris276, 1673-1674 (1973)
[11] Tomczak-Jaegermann, N.: Computing 2-summing norm with few vectors. Ark. Math.17, 273-277 (1979) · Zbl 0436.47033
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.