Group constructible (t,k)-nets and Hjelmslev planes. (English) Zbl 0461.05016


05B25 Combinatorial aspects of finite geometries
51C05 Ring geometry (Hjelmslev, Barbilian, etc.)
51D20 Combinatorial geometries and geometric closure systems
51E30 Other finite incidence structures (geometric aspects)
Full Text: DOI


[1] Bruck, R. H., Finite nets, II, uniqueness and imbedding, Pacif. J. Math., 13, 421-457 (1963) · Zbl 0124.00903
[2] Drake, D. A., Near affine Hjelmslev planes, J. Combinatorial Theory, 16, 34-50 (1974) · Zbl 0276.05026
[3] Drake, D. A., More new integer pairs for finite Hjelmslev planes, Illinois J. Math., 19, 618-627 (1975) · Zbl 0311.05017
[4] Drake, D. A.; Lenz, H., Finite Klingenberg planes, Abh. Math. Sem. Univ. Hamburg, 44, 70-83 (1975) · Zbl 0322.05021
[5] Drake, D. A.; Shult, E. E., Construction of Hjelmslev planes from (t, k)-nets, Geometriae Dedicata, 5, 377-392 (1976) · Zbl 0358.05014
[6] Gorenstein, D., Finite Groups (1968), Harper & Row: Harper & Row New York · Zbl 0185.05701
[7] Hall, M., The Theory of Groups (1959), Macmillan: Macmillan New York
[8] Jungnickel, D., (Ph.D. dissertation (1976), Freie Universität: Freie Universität Berlin)
[9] Klingenberg, W., Projektive und affine Ebenen mit Nachbarelementen, Math. Z., 60, 384-406 (1954) · Zbl 0057.12601
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.