zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Equationally complete (m,n) rings. (English) Zbl 0461.16030

20N15$n$-ary systems $(n\ge 3)$ (group theory)
16P10Finite associative rings and finite-dimensional algebras
16DxxModules, bimodules and ideals (associative rings and algebras)
Full Text: DOI
[1] Birkhoff, G.,Lattice Theory, Amer. Math. Soc. Coll. Pub. Vol. XXV., 1967. · Zbl 0153.02501
[2] Clark, D. M., andP. H. Krauss,Para Primal Algebras, Algebra Universalis,6 (1976), 165--192. · Zbl 0368.08004 · doi:10.1007/BF02485828
[3] Cohn, P. M.,Universal Algebra, Harper, New York, 1965.
[4] Crombez, G.,On (n, m)-rings, Abh. Math. Sem. Univ. Hamburg,37 (1972), 180--199. · Zbl 0247.08001 · doi:10.1007/BF02999695
[5] Kalicki, J. andD. Scott,Equational Completeness of Abstract Algebras, Indag. Math.17 (1955), 650--659. · Zbl 0073.24501
[6] Kaplansky, I.,Commutative Rings, Allyn & Bacon, Inc., Boston, 1970. · Zbl 0203.34601
[7] Leeson, J. J. andA. T. Butson,On the general theory of (m, n) rings, Algebra Universalis,11 (1980), 42--76. · Zbl 0461.16029 · doi:10.1007/BF02483082
[8] Monk, J. D. andF. M. Sioson,On the general theory of m-groups, Fund. Math.,72 (1971), 233--244. · Zbl 0226.20079
[9] Neumann, H.,Varieties of Groups, Springer Verlag, New York, 1967. · Zbl 0149.26704
[10] Orr, G. F.,The lattice of varieties of semirings, doctoral Dissertation, Univ. of Miami, 1973.
[11] Page, W. F.,The lattice of equational classes of m-semigroups, Doctoral Dissertation, Univ. of Miami, 1973. · Zbl 0287.08004
[12] Tarski, A.,Equationally complete rings and relation algebras, Indag. Math.,18 (1956), 39--46. · Zbl 0073.24603
[13] Taylor, W.,The Fine Spectrum of a Variety, Algebra Universalis,5 (1975), 263--303. · Zbl 0336.08004 · doi:10.1007/BF02485261