×

zbMATH — the first resource for mathematics

On the Bernstein-Gelfand-Gelfand resolution and the Duflo sum formula. (English) Zbl 0461.17004

MSC:
17B55 Homological methods in Lie (super)algebras
18G10 Resolutions; derived functors (category-theoretic aspects)
PDF BibTeX XML Cite
Full Text: Numdam EuDML
References:
[1] I.N. Bernstein , I.M. Gelfand and S.I. Gelfand : Category of g modules , Funct. Anal. Priloz., 10 (1976) 1-18. · Zbl 0353.18013 · doi:10.1007/BF01077933
[2] I.N. Bernstein , I.M. Gelfand and S.I. Gelfand : Differential operators on the base affine space and a study of g modules , In Lie groups and their representations ; proceedings, Bolyai János Math. Soc., Budapest, 1971. Ed. I.M. Gelfand, London, Hilger, 1975.]. · Zbl 0338.58019
[3] I.N. Bernstein and S.I. Gelfand : Tensor products of finite and infinite dimensional representations of semisimple Lie algebras . Compos. Math., 41 (1980) 245-285. · Zbl 0445.17006 · numdam:CM_1980__41_2_245_0 · eudml:89458
[4] W. Borho and J.C. Jantzen : Über primitive Ideale in der Einhüllenden einer halbeinfacher Lie-Algebra . Invent. Math., 39 (1977) 1-53. · Zbl 0327.17002 · doi:10.1007/BF01695950 · eudml:142455
[5] N. Conze-Berline and M. Duflo : Sur les représentations induites des groupes semi-simples complexes . Compos. Math., 34 (1977) 307-336. · Zbl 0389.22016 · numdam:CM_1977__34_3_307_0 · eudml:89330
[6] P. Delorme : Extensions dans la cátegorie O de Bernstein-Gelfand-Gelfand . Applications , preprint, Paris, 1977.
[7] J. Dixmier : Algèbres enveloppantes . Cahiers scientifiques , XXXVII, Gauthier-Villars, Paris, 1974. · Zbl 0308.17007
[8] M. Duflo : Sur la classification des idéaux primitifs dans l’algèbre enveloppante d’une algèbre de Lie semi-simple . Ann. Math., 105 (1977) 107-120. · Zbl 0346.17011 · doi:10.2307/1971027 · www.jstor.org
[9] M. Duflo : Representations irréductibles des groupes semi-simples complexes, in LN 497 , Springer-Verlag, Berlin/ Heidelberg/New York, 1975, pp. 26-88. · Zbl 0315.22008
[10] O. Gabber and A. Joseph : Towards the Kazhdan-Lusztig conjecture . Ann. Ec. Norm. Sup. (in the press). · Zbl 0476.17005 · doi:10.24033/asens.1406 · numdam:ASENS_1981_4_14_3_261_0 · eudml:82075
[11] J.C. Jantzen : Moduln mit einem höchten Gewicht, LN 750 , Springer-Verlag, Berlin/Heidelberg /New York, 1979. · Zbl 0426.17001
[12] A. Joseph : On the annihilators of the simple subquotients of the principal series . Ann. Ec. Norm. Sup., 10 (1977) 419-440. · Zbl 0386.17004 · doi:10.24033/asens.1332 · numdam:ASENS_1977_4_10_4_419_0 · eudml:82001
[13] A. Joseph : Kostant’s problem, Goldie rank and the Gelfand-Kirillov conjecture . Invent. Math., 56 (1980) 191-213. · Zbl 0446.17006 · doi:10.1007/BF01390044 · eudml:142695
[14] A. Joseph : Dixmier’s problem for Verma and principal series submodules . J. Lond. Math. Soc., 20 (1979) 193-204. · Zbl 0421.17005 · doi:10.1112/jlms/s2-20.2.193
[15] A. Joseph : Goldie rank in the enveloping algebra of a semisimple Lie algebra. I , J. Alg., 66 (1980) 269-283. · Zbl 0441.17004 · doi:10.1016/0021-8693(80)90217-3
[16] A. Joseph : Towards the Jantzen conjecture . Compos. Math., 40 (1980) 35-67. · Zbl 0424.17004 · numdam:CM_1980__40_1_35_0 · eudml:89425
[17] A. Joseph : Gelfand-Kirillov dimension for the annihilators of simple quotients of Verma modules . J. Lond. Math. Soc., 18 (1978) 50-60. · Zbl 0401.17007 · doi:10.1112/jlms/s2-18.1.50
[18] A. Joseph and L.W. Small : An additivity principle for Goldie rank . Israel J. Math., 31 (1978) 105-114. · Zbl 0395.17010 · doi:10.1007/BF02760541
[19] D.A. Kazhdan and G. Lusztig : Representations of Coxeter groups and Hecke algebras . Invent. Math., 53 (1979) 165-184. · Zbl 0499.20035 · doi:10.1007/BF01390031 · eudml:142660
[20] J. Lepowsky : A generalization of the Bernstein-Gelfand-Gelfand resolution , J. Alg, 49 (1977) 496-511. · Zbl 0381.17006 · doi:10.1016/0021-8693(77)90254-X
[21] N.N. Shapovalov : On a bilinear form on the universal enveloping algebra of a complex semisimple Lie algebra . Funct. Anal. Priloz, 6 (1972) 307-311. · Zbl 0283.17001 · doi:10.1007/BF01077650
[22] D. Vogan : Irreducible characters of semisimple Lie groups I . Duke Math. J., 46 (1979) 61-108. · Zbl 0398.22021 · doi:10.1215/S0012-7094-79-04605-2
[23] D. Vogan : Irreducible characters of semisimple Lie groups II . The Kazdhan-Lusztig conjectures , preprint, M.I.T. 1979. · Zbl 0421.22008 · doi:10.1215/S0012-7094-79-04642-8
[24] D. Vogan : Ordering in the primitive spectrum of a semisimple Lie algebra . Math. Ann., 248 (1980) 195-203. · Zbl 0414.17006 · doi:10.1007/BF01420525 · eudml:163378
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.