×

zbMATH — the first resource for mathematics

On a new Segal algebra. (English) Zbl 0461.43003

MSC:
43A15 \(L^p\)-spaces and other function spaces on groups, semigroups, etc.
43A20 \(L^1\)-algebras on groups, semigroups, etc.
46J10 Banach algebras of continuous functions, function algebras
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Argabright, L., andGil De Lamadrid, J.: Fourier Analysis of Unbounded Measures on Locally Compact Abelian Groups. Mem. Amer. Math. Soc. 145. Providence, R. I.: Amer. Math. Soc. 1974. · Zbl 0294.43002
[2] Bertrandias, J. P., Datry, C., andDupuis, C.: Unions et intersections d’espacesL p invariantes par translation ou convolution. Ann. Inst. Fourier28/2, 53-84 (1978). · Zbl 0365.46029
[3] Bruhat, H.: Distributions sur un groupe localement compact et applications ? l’?tude des repr?sentations des groupesp-adiques. Bull. Soc. Math. France89, 43-75 (1961). · Zbl 0128.35701
[4] B?rger, R.: Functions of translation type and functorial properties of Segal algebras. Mh. Math.90, 101-115 (1980); Part II. Mh. Math.92, 253-268 (1981). · Zbl 0433.43001 · doi:10.1007/BF01303261
[5] Coifman, R., andWeiss, G.: Extensions of Hardy spaces and their use in analysis. Bull. Amer. Math. Soc.83, 569-645 (1977). · Zbl 0358.30023 · doi:10.1090/S0002-9904-1977-14325-5
[6] Cowling, M.: Some applications of Grothendieck’s theory of topological tensor products in harmonic analysis. Math. Ann.232, 273-285 (1978). · Zbl 0363.43006 · doi:10.1007/BF01351432
[7] Dixmier, J., andMalliavin, P.: Factorisation de fonctions et de vecteurs ind?finement differentiable. Bull. Sci. Math.102, 305-330 (1978). · Zbl 0392.43013
[8] Edwards, R. E.: Approximation by convolutions. Pac. J. Math.15, 85-95 (1965). · Zbl 0141.12504
[9] Eymard, P., andTerp, M.: La transformation de Fourier et son inverse sur le groupe desax+b d’un corps local. In: Analyse Harmonique sur les Groupes de Lie II. pp. 207-248. Lecture Notes Math. 739. Berlin-Heidelberg-New York: Springer. 1979.
[10] Feichtinger, H. G.: A characterization of Wiener’s algebra on locally compact groups. Arch. Math.29, 136-140 (1977). · Zbl 0363.43003 · doi:10.1007/BF01220386
[11] Feichtinger, H. G.: Multipliers fromL 1(G) to a homogeneous Banach space. J. Math. Anal. Appl.61, 341-356 (1977). · Zbl 0375.43002 · doi:10.1016/0022-247X(77)90120-2
[12] Feichtinger, H. G.: The minimal strongly character invariant Segal algebra, I and II. Preprint. Univ. Wien. 1979.
[13] Feichtinger, H. G.: Un espace de Banach de distributions temp?r?es sur les groupes localement compacts ab?liens. C. R. Acad. Sci. Paris, S?r. A290, 791-794 (1980). · Zbl 0433.43002
[14] Feichtinger, H. G.: A characterization of minimal homogeneous Banach spaces. Proc. Amer. Math. Soc.81, 55-61 (1981). · Zbl 0465.43002 · doi:10.1090/S0002-9939-1981-0589135-9
[15] Feichtinger, H. G.: Banach convolution algebras of Wiener’s type. In: Proc. Conf. Functions, Series, Operators, Budapest 1980. (To appear). · Zbl 0528.43001
[16] Feichtinger, H. G.: Banach spaces of Wiener’s type and interpolation. In: Proc. Funct. Anal. ApproxO Oberwolfach, 1980, pp. 153-165. Intern. Ser. Numer. Math. 60, Basel-Stuttgart: Birkh?user. 1981.
[17] Feichtinger, H. G.: Good vectors and Besov spaces of order zero. Announcement in Abstracts. Amer. Math. Soc. 1981.
[18] Feichtinger, H. G., Graham, C. C., andLakien, E. H.: Factorization in commutative weakly self-adjoint Banach algebras. Pac. J. Math.80, 117-125 (1979). · Zbl 0402.43003
[19] Gaudry, G. I.: Quasimeasures and operators commuting with convolution. Pac. J. Math.18, 461-476 (1966). · Zbl 0156.14601
[20] Holland, F.: On the representation of functions as Fourier transforms of unbounded measures. Proc. London Math. Soc. (3)30, 347-365 (1975). · Zbl 0309.42018 · doi:10.1112/plms/s3-30.3.347
[21] Kahane, J. P.: S?ries de Fourier Absolument Convergentes. Ergeb. d. Math. 50. Berlin-Heidelberg-New York: Springer. 1970. · Zbl 0195.07602
[22] Krogstad, H. E.: Multipliers of Segal algebras. Math. Scand.38, 285-303 (1976). · Zbl 0335.43004
[23] Krogstad, H. E.: Segal algebras on quotient groups. Preprint. Univ. Trondheim. · Zbl 0335.43004
[24] Larsen, R.: Introduction to the Theory of Multipliers. Berlin-Heidelberg-New York: Springer, 1971. · Zbl 0213.13301
[25] Leptin, H.: On one-sided harmonic analysis in non commutative locally compact groups. J. reine angew. Math.306, 122-153 (1979). · Zbl 0399.22004 · doi:10.1515/crll.1979.306.122
[26] Losert, V.: A characterization of the minimal strongly character invariant Segal algebra. Ann. Inst. Fourier30/3, 129-139 (1980). · Zbl 0425.43003
[27] Osborne, M. S.: On the Schwartz-Bruhat space and the Paley-Wiener theorem for locally compact abelian groups. J. Funct. Anal.19, 40-49 (1975). · Zbl 0295.43008 · doi:10.1016/0022-1236(75)90005-1
[28] Petzeltov?, H., andVrbova, P.: Factorization in the algebra of rapidly decreasing functions on ? n . Comm. Univ. Car.19/3, 489-499 (1978).
[29] Poguntke, D.: Gewisse Segalsche Algebren auf lokalkompakten Gruppen. Arch. Math.33, 454-460 (1980). · Zbl 0411.46040 · doi:10.1007/BF01222784
[30] Reiter, H.: Classical Harmonic Analysis and Locally Compact Groups. Oxford: University Press, 1968. · Zbl 0165.15601
[31] Reiter, H.: ?ber den Satz von Weil-Cartier. Mh. Math.86, 13-62 (1978). · Zbl 0396.43015 · doi:10.1007/BF01300054
[32] Rieffel, M. A.: Induced Banach representations of Banach algebras and locally compact groups. J. Funct. Anal.1, 443-491 (1967). · Zbl 0181.41303 · doi:10.1016/0022-1236(67)90012-2
[33] Rieffel, M. A.: Multipliers and tensor products ofL p-spaces of locally compact groups. Stud. Math.33, 71-82 (1969). · Zbl 0177.41702
[34] Stewart, J.: Fourier transforms of unbounded measures. Can. J. Math.31, 1281-1292 (1979). · Zbl 0465.43004 · doi:10.4153/CJM-1979-106-4
[35] Tewari, U. B.: Isomorphisms of some convolution algebras and their multiplier algebras. Bull. Austral. Math. Soc.7, 321-335 (1972). · Zbl 0256.43007 · doi:10.1017/S0004972700045172
[36] Tewari, U. B.: Multipliers of Segal algebras. Proc. Amer. Math. Soc.54, 157-161 (1976). · Zbl 0317.43009 · doi:10.1090/S0002-9939-1976-0447976-0
[37] Wiener, N.: The Fourier Integral and Certain of Its Applications. Cambridge: University Press. 1933. · Zbl 0006.05401
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.