×

Versik processes: First steps. (English) Zbl 0461.60054


MSC:

60G10 Stationary stochastic processes
28D05 Measure-preserving transformations
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] L. M. Abramov,On the entropy of a derived automorphism, Dokl. Akad. Nauk SSSR128 (1959), 647–650; English transl.; Amer. Math. Soc. Transl. (2)49 (1966), 162–166.
[2] P. Billingsley,Ergodic Theory and Information, John Wiley, 1965. · Zbl 0141.16702
[3] R. M. Burton, Jr.,A non-Bernoulli skew product, Thesis, Stanford Univ., 1977.
[4] M. Denker, C. Grillenberger and K. Sigmund,Ergodic theory on compact spaces, Lecture Notes in Math.527, 1976. · Zbl 0328.28008
[5] J. Feldman,New K-automorphisms and a problem of Kakutani, Israel J. Math.24 (1976), 16–38. · Zbl 0336.28003
[6] J. Feldman,Some remarks about finitely determined and finitely fixed processes, unpublished (1976).
[7] N. Friedman,Introduction to Ergodic Theory, Van Nostrand Reinhold, 1970.
[8] W. Krieger,On entropy and generators of measure-preserving transformations. Trans. Amer. Math. Soc.149 (1970), 453–464. · Zbl 0204.07904
[9] I. Meilijson,Mixing properties of a class of skew-products, Israel J. Math.19 (1974), 266–270. · Zbl 0305.28008
[10] D. S. Ornstein,A mixing transformation for which Pinsker’s conjecture fails, Advances in Math.10 (1973), 103–123. · Zbl 0248.28011
[11] D. S. Ornstein,Ergodic Theory, Randomness and Dynamical Systems, Yale Univ. Press, 1974.
[12] D. S. Ornstein and P. Shields,An uncountable family of K automorphisms, Advances in Math.10 (1973), 63–68. · Zbl 0251.28004
[13] D. S. Ornstein and B. Weiss,Finitely determined implies very weak Bernoulli, Israel J. Math.17 (1974), 94–104. · Zbl 0283.60072
[14] W. Parry,Entropy and Generators in Ergodic Theory, W. A. Benjamin, 1969. · Zbl 0175.34001
[15] S. Polit,Weakly isomorphic transformations need not be isomorphic, Thesis, Stanford Univ., 1974.
[16] D. J. Rudolph,Two nonisomorphic K-automorphisms with isomorphic squares, Israel J. Math.23 (1976), 274–287. · Zbl 0336.28004
[17] D. J. Rudolph,Nonequivalence of measure preserving transformations, Lecture Notes, Institute of Advanced Studies, Hebrew Univ. of Jerusalem, 1976.
[18] B. Weiss,Equivalence of Measure Preserving Transformations, Lecture Notes, Institute of Advanced Studies, Hebrew Univ. of Jerusalem, 1976.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.