×

zbMATH — the first resource for mathematics

A rigid analytic version of M. Artin’s theorem on analytic equations. (English) Zbl 0462.14002

MSC:
14B12 Local deformation theory, Artin approximation, etc.
14G20 Local ground fields in algebraic geometry
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Artin, M.: On the solutions of analytic equations. Invent. Math.5, 277-291 (1968) · Zbl 0172.05301 · doi:10.1007/BF01389777
[2] Bosch, S.:k-affinoide Gruppen. Invent. Math.10, 128-176 (1970) · Zbl 0195.50901 · doi:10.1007/BF01403152
[3] Bosch, S.: Multiplikative Untergruppen in abeloiden Mannigfaltigkeiten. Math. Ann.239, 165-183 (1979) · Zbl 0402.14015 · doi:10.1007/BF01420374
[4] Bosch, S., Dwork, B., Robba, P.: Un théorème de prolongement pour des fonctions analytiques. Math. Ann.252, 165-173 (1980) · Zbl 0446.32005 · doi:10.1007/BF01420121
[5] Fieseler, K.-H.: Zariski’s Main Theorem in der nichtarchimedischen Funktionentheorie. Schr. Math. Inst. Univ. Münster, 2. Serie, Heft 18 (1979) · Zbl 0414.32009
[6] Lang, S.: On quasi algebraic closure. Ann. Math.55, 373-390 (1952) · Zbl 0046.26202 · doi:10.2307/1969785
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.